

# **Compressing Large-Scale Transformer-Based Models:** A Case Study on BERT



Prakhar Ganesh<sup>1\*</sup> Yao Chen<sup>1\*</sup> Mohammad Ali Khan<sup>1</sup> Xin Lou<sup>1</sup> LINOIS Preslav Nakov<sup>3</sup> Deming Chen<sup>1,4</sup> Hassan Sajjad<sup>3</sup> Marianne Winslett<sup>1,4</sup> Yin Yang<sup>2</sup> <sup>2</sup>College of Science and Engineering, Hamad Bin Khalifa University, Qatar <sup>1</sup>Advanced Digital Sciences Center, Illinois at Singapore

<sup>2</sup>Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar <sup>4</sup>University of Illinois at Urbana-Champaign, USA

### **Motivation**

 $\succ$ Growing size of pre-trained models, approaching trillions of parameters > Deployment requires access to cloud computing or high-performance clusters Solution: **Model Compression!** >We offer a comprehensive systematic study of model compression for **Transformer-based large-scale NLP** models, with focus on BERT

### **BERT Breakdown Analysis**





# Pruning **Structured Pruning**



## **Knowledge Distillation**





#### **Dynamic Inference Acceleration**





#### **Effectiveness of Compression**

## **Practical Suggestions**

| wienious                                    | Model Size |         | Speedup |       | Accuracy/F1 |      |       |      | Avr.  |
|---------------------------------------------|------------|---------|---------|-------|-------------|------|-------|------|-------|
|                                             | w/ emb     | w/o emb | GPU     | CPU   | MNLI        | QQP  | SST-2 | SQD  | Drop  |
| $\operatorname{BERT}_{\operatorname{BASE}}$ | 100%       | 100%    | 1x      | 1x    | 84.6        | 89.2 | 93.5  | 88.5 | 0.0   |
| Quantization                                | 15%        | 12.5%   | 1x      | 1x    | 83.9        | _    | 92.6  | 88.3 | -0.6  |
|                                             | 10.2%      | 5.5%    | 1x      | 1x    | 83.7        | _    | _     | _    | -0.9  |
| Unstructured<br>Pruning                     | 67.6%      | 58.7%   | 1x      | 1x    | _           | _    | _     | 88.5 | 0.0   |
|                                             | 48.9%      | 35.1%   | 1x      | 1x    | 83.1        | 89.5 | 92.9  | 87.8 | -0.63 |
|                                             | 23.8%      | 3%      | 1x      | 1x    | 79.0        | 89.3 | _     | 79.9 | -4.73 |
| Structured<br>Pruning                       | 60.7%      | 50%     | _       | _     | _           | 88.9 | 91.8  | _    | -1.0  |
|                                             | 39.1%      | 38.8%   | 2.93x   | 2.76x | 83.4        | —    | 90.9  | 86.7 | -1.86 |
| KD from<br>Output Logits                    | 22.8%      | 10.9%   | 6.25x   | 7.09x | _           | 88.6 | 92.9  | _    | -0.6  |
|                                             | 24.1%      | 3.3%    | 10.7x   | 8.6x  | 78.6        | 88.6 | 91.0  | _    | -3.03 |
|                                             | 7.4%       | 4.8%    | 19.5x   | -     | 81.6        | 88.7 | 91.8  | -    | -2.06 |
| KD from Attn.                               | 60.7%      | 50%     | 1.94x   | 1.73x | 84.0        | 91.0 | 92.0  | _    | -0.1  |
| Multiple KD combined                        | 60.7%      | 50%     | 1.94x   | 1.73x | 82.2        | 88.5 | 91.3  | 86.9 | -1.73 |
|                                             | 23.1%      | 24.8%   | 3.9x    | 4.7x  | 83.3        | _    | 92.8  | 90.0 | -0.16 |
|                                             | 13.3%      | 6.4%    | 9.4x    | 9.3x  | 82.5        | 89.2 | 92.6  | _    | -1.0  |
|                                             | 1.6%       | 1.8%    | 25.5x   | 22.7x | 71.3        | —    | 82.2  | -    | -12.3 |
| Matrix                                      | 60.6%      | 49.1%   | 0.92x   | 1.05x | 84.8        | 89.7 | 92.4  | _    | -0.13 |
| Decomposition                               | 100%       | 100%    | 3.14x   | 3.55x | 82.6        | 90.3 | _     | 87.1 | -0.76 |
| Dynamic<br>Inference                        | 100%       | 100%    | 1.25x   | 1.28x | 83.9        | 89.2 | 93.4  | _    | -0.26 |
|                                             | 100%       | 100%    | 2.5x    | 3.1x  | 83.8        | _    | 92.1  | _    | -1.1  |
| Param. Sharing                              | 10.7%      | 8.8%    | 1.2x    | 1.2x  | 84.3        | 89.6 | 90.3  | 89.3 | -0.58 |
| Pruning<br>with KD                          | 40.0%      | 37.3%   | 1x      | 1x    | 83.5        | 88.9 | 92.8  | _    | -0.7  |
|                                             | 31.2%      | 12.4%   | 5.9x    | 8.7x  | 82.0        | 90.4 | 92.0  | _    | -0.96 |
| Quantization                                | 7.6%       | 3.9%    | 1.94x   | 1.73x | 82.0        | _    | -     | _    | -2.6  |
| with KD                                     | 5.7%       | 6.1%    | 3.9x    | 4.7x  | 83.3        | _    | 92.6  | 90.0 | -0.23 |
| Compound                                    | 1.3%       | 0.9%    | 1.83x   | _     | 84.4        | 89.8 | 88.5  | _    | -1.53 |

Quantization is the best single compression method for accuracy-size trade-off

- Unstructured pruning can reduce size without accuracy drop, but fails for extreme compression
- Model agnostic distillation allows training BiLSTM and CNN student models for tremendous speedup
- Combining multiple distillation methods, specially attention distillation, can improve performance
  - Pruning and Quantization can be guided using distillation for better accuracy
- Compounding multiple compression methods together can help with extreme compression at minimal drop in accuracy

- > Choose an appropriate baseline based on the downstream task requirement
- Use specialised hardware and accelerators
- Investigate the target setup
  - Choose a compression method based on the acceleration requirement, i.e., accelerator characteristics
  - Choose an appropriate student model
- Compound different compression methods
  - Combine various BERT-specific methods
  - Use knowledge distillation as a guide for other forms of compression