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Motivation
➢Growing size of pre-trained models,    

approaching trillions of parameters
➢Deployment requires access to cloud 

computing or high-performance clusters
➢Solution: Model Compression!
➢We offer a comprehensive systematic 

study of model compression for 
Transformer-based large-scale NLP 
models, with focus on BERT

BERT Breakdown Analysis

Quantization Pruning

Knowledge Distillation Matrix Decomposition

Dynamic Inference Acceleration Other Methods

Effectiveness of Compression Practical Suggestions
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➢ Choose an appropriate baseline based on the 
downstream task requirement

➢ Use specialised hardware and accelerators
➢ Investigate the target setup

● Choose a compression method based 
on the acceleration requirement, i.e., 
accelerator characteristics

● Choose an appropriate student model

➢ Compound different compression methods
● Combine various BERT-specific 

methods
● Use knowledge distillation as a guide 

for other forms of compression

➢ Quantization is the best single compression 
method for accuracy-size trade-off

➢ Unstructured pruning can reduce size without 
accuracy drop, but fails for extreme compression

➢ Model agnostic distillation allows training BiLSTM 
and CNN student models for tremendous speedup

➢ Combining multiple distillation methods, specially 
attention distillation, can improve performance

➢ Pruning and Quantization can be guided using 
distillation for better accuracy

➢ Compounding multiple compression methods 
together can help with extreme compression at 
minimal drop in accuracy
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