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Why Do We Need Compression?

● Rapidly increasing size of pre-trained 
language models

Data Source : https://analyticsindiamag.com/we-might-see-a-100t-language-model-in-2022/
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Why Do We Need Compression?

● Rapidly increasing size of pre-trained 
language models

● Even a highly advanced data center GPU 
like Nvidia H100 (80 GB Memory) can only 
handle a few billion parameters during 
inference!!

● Deploying these models requires access 
to high-performance clusters

● Solution: Model Compression!

Data Source : https://analyticsindiamag.com/we-might-see-a-100t-language-model-in-2022/
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BERT Breakdown: Computation & Memory
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BERT Breakdown: Runtime Memory
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BERT Breakdown: Runtime Memory
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BERT Breakdown: Inference Latency
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Pruning: Embedding Size Pruning
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Pruning: Attention Head Pruning
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Recent Work in BERT Pruning

● Several papers have been published on pruning for BERT compression since 
the publication of our survey!!

● Guo, Demi, et al. "Parameter-Efficient Transfer Learning with Diff Pruning." ACL-IJCNLP 2021.
● Xu, Dongkuan, et al. "Rethinking Network Pruning–under the Pre-train and Fine-tune Paradigm." NAACL 2021.
● Rotman, Guy, et al. "Model compression for domain adaptation through causal effect estimation." TACL 2021.
● Kovaleva, Olga, et al. "BERT Busters: Outlier Dimensions that Disrupt Transformers." ACL-IJCNLP 2021.
● Fan, Chun, et al. "Layer-wise Model Pruning based on Mutual Information." EMNLP 2021.
● Peer, David, et al. "Greedy-layer Pruning: Speeding up Transformer Models for Natural Language Processing." Pattern Recognition Letters 2022. 31
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Knowledge Distillation
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Other Methods
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Other Methods

● Parameter Sharing: Sharing parameters across various encoders

Sharing 
weights 
across 

encoders

Reid, Machel et al.. "Subformer: Exploring Weight Sharing for Parameter Efficiency in Generative Transformers." EMNLP 2021.

More nuanced methods 
of parameter sharing 

have also been explored
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Other Methods

● Parameter Sharing: Sharing parameters across various encoders

● Embedding Matrix Compression: Compressing the embedding matrix 
(e.g., by reducing the vocabulary size)

21% of total size 49



Other Methods

● Parameter Sharing: Sharing parameters across various encoders

● Embedding Matrix Compression: Compressing the embedding matrix  
(e.g., by reducing the vocabulary size)

● Weight Squeezing: Distilling ‘weight’ signal instead of output signals

50
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Quantization

Quantization is the best single compression method
● can reduce model tenfold, with only 0.9% drop in accuracy
● yet, requires specialised hardware for inference speedup!

10.2% of 
original size

Only 0.9% drop 
in accuracy

Zadeh, Ali Hadi, et al. "GOBO: Quantizing attention-based nlp models for low latency and energy efficient inference." IEEE/ACM MICRO 2020.
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Pruning

● A great method to reduce completely redundant weights 
● Can reduce model size up to 67% of original size with no drop in accuracy
● Unstructured pruning has not been used to reduce the size of the 

embedding matrix (which takes 21% of the total model size)

67.6% of the 
original size

No change 
in accuracy

Guo, Fu-Ming, et al. "Reweighted proximal pruning for large-scale language representation." arXiv preprint arXiv:1909.12486 (2019).
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BiLSTM and CNN Student Models

● Knowledge distillation allows to train BiLSTM- and CNN-based students
● Existing work can achieve up to 19.5x speedup with only a 2.06% accuracy drop
● CNNs can provide special caching benefits due to local processing

Chen, Daoyuan, et al. "AdaBERT: task-adaptive BERT compression with differentiable neural architecture search." IJCAI 2021.

19.5x 
speedup

2.06% drop in 
average accuracy
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Combining Compression Methods

● Combining multiple compression methods can filter out more redundancies
● Existing work in combining compression methods can reduce model size to 

only 1.3% of its original size with just 1.53% drop in accuracy!

1.3% of 
original size

1.53% drop in 
average accuracy

55
Tambe, Thierry, et al. "Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference." IEEE/ACM MICRO 2021.



Combining Compression Methods

● Combining multiple compression methods can filter out more redundancies
● Existing work in combining compression methods can reduce model size to 

only 1.3% of its original size with just 1.53% drop in accuracy!
● More work in combining various compression methods was done since our 

publication!

Liu, Yuanxin, et al. "ROSITA: Refined BERT cOmpreSsion with InTegrAted techniques." AAAI 2021.
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Practical Advice

● Choose an appropriate baseline

● Use specialised hardware and accelerators

● Investigate the target setup
○ Choose appropriate quantization and pruning settings

○ Choose an appropriate student model

● Compound different compression methods
○ Combine multiple forms of compatible compression methods

○ Use knowledge distillation as a guide for other forms of compression
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Thank You
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