Compressing Large-Scale Transformer-Based Models: A Case Study on BERT

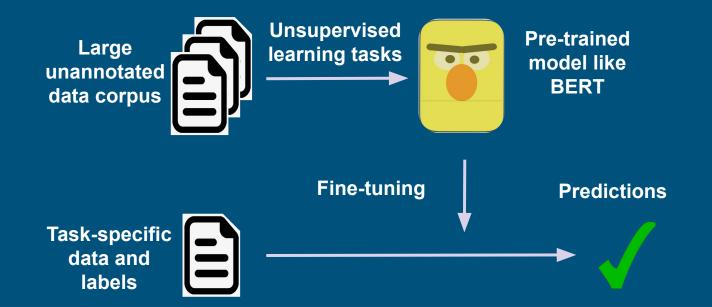
Prakhar Ganesh^{1*}, Yao Chen^{1*}, Xin Lou¹, Mohammad Ali Khan¹, Yin Yang², Hassan Sajjad³, Preslav Nakov³, Deming Chen^{1,4}, Marianne Winslett^{1,4}

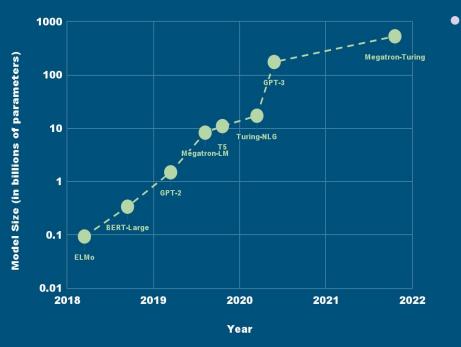
¹Advanced Digital Sciences Center, Illinois at Singapore
² College of Science and Engineering, Hamad Bin Khalifa University, Qatar
³Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar
⁴ University of Illinois at Urbana-Champaign, USA

Large-Scale Pre-Trained Models

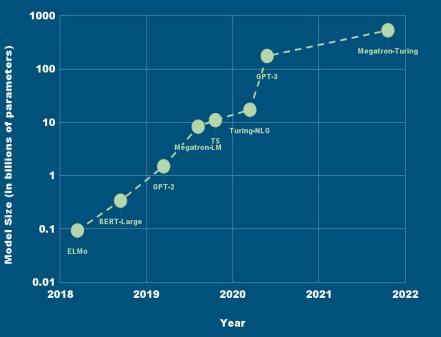
Large-Scale Pre-Trained Models

Large-Scale Pre-Trained Models

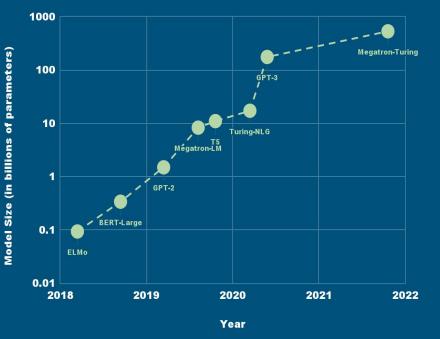




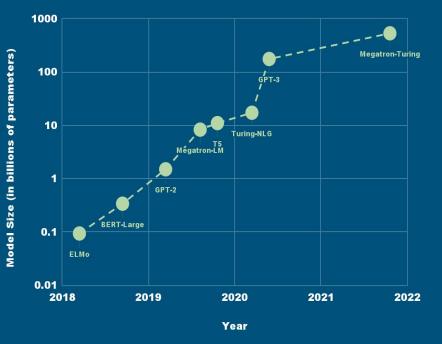
 Rapidly increasing size of pre-trained language models



- Rapidly increasing size of pre-trained language models
- Even a highly advanced data center GPU like Nvidia H100 (80 GB Memory) can only handle a few billion parameters during inference!!



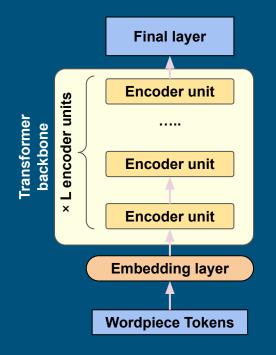
- Rapidly increasing size of pre-trained language models
- Even a highly advanced data center GPU like Nvidia H100 (80 GB Memory) can only handle a few billion parameters during inference!!
- Deploying these models requires access to high-performance clusters



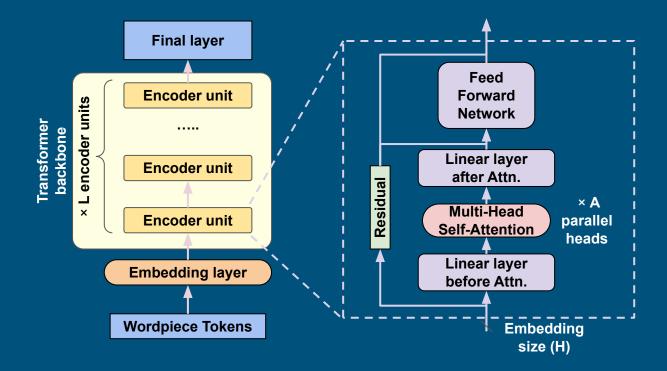
- Rapidly increasing size of pre-trained language models
- Even a highly advanced data center GPU like Nvidia H100 (80 GB Memory) can only handle a few billion parameters during inference!!
- Deploying these models requires access to high-performance clusters
- Solution: Model Compression!

BERT Breakdown Analysis

BERT Model



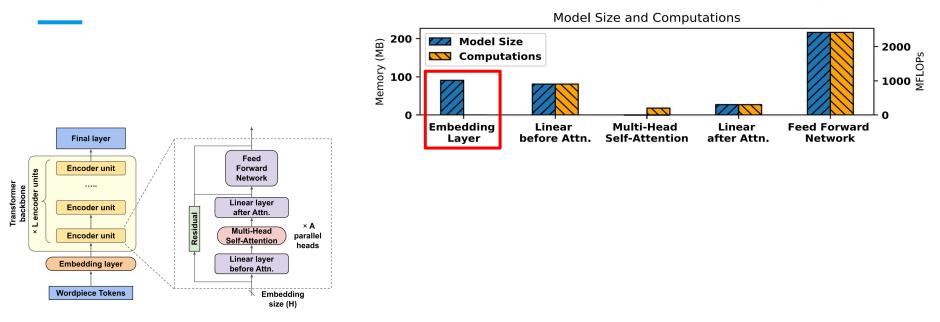
BERT Model



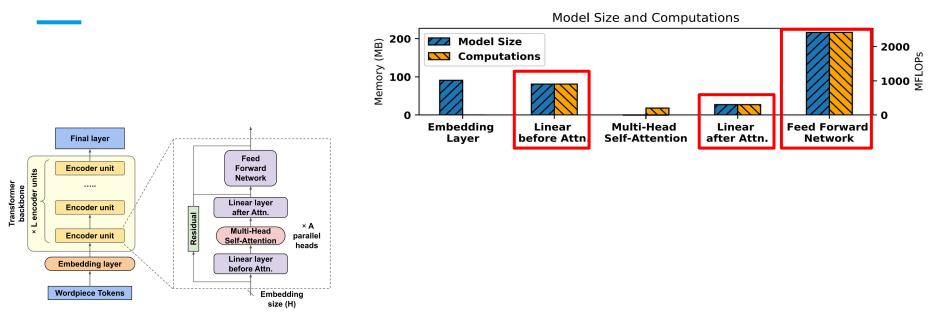
BERT Breakdown: Computation & Memory



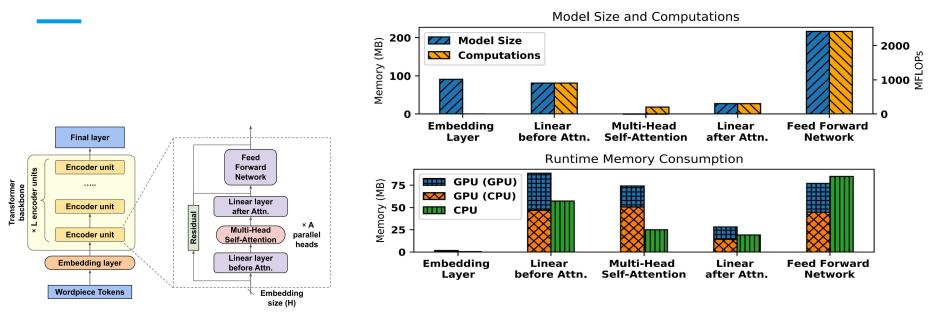
BERT Breakdown: Computation & Memory



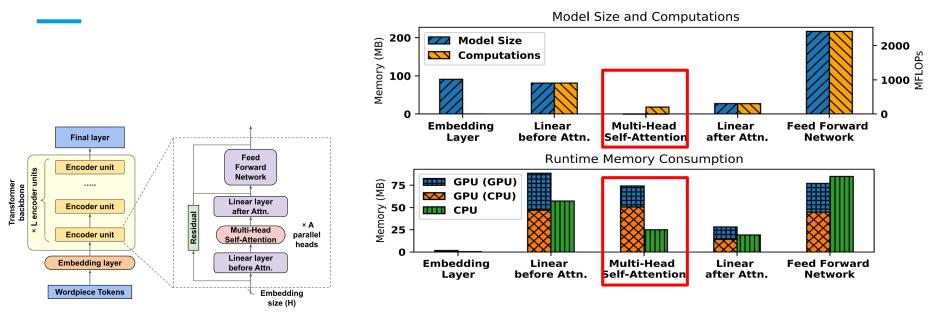
BERT Breakdown: Computation & Memory



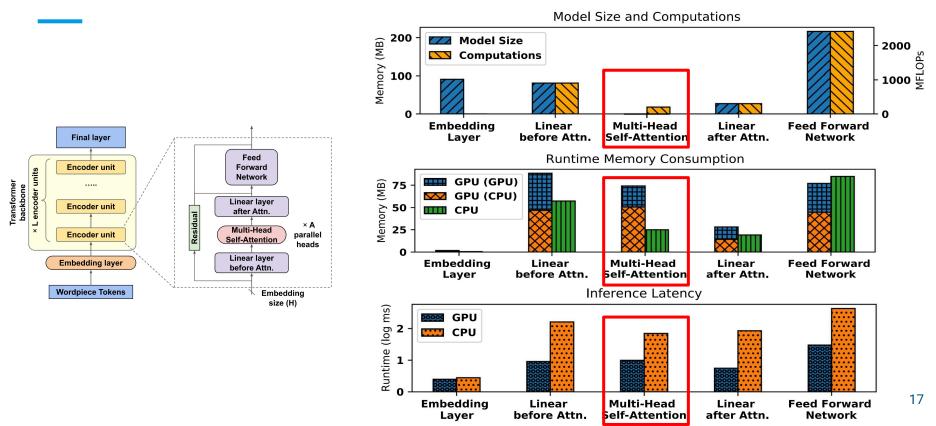
BERT Breakdown: Runtime Memory



BERT Breakdown: Runtime Memory

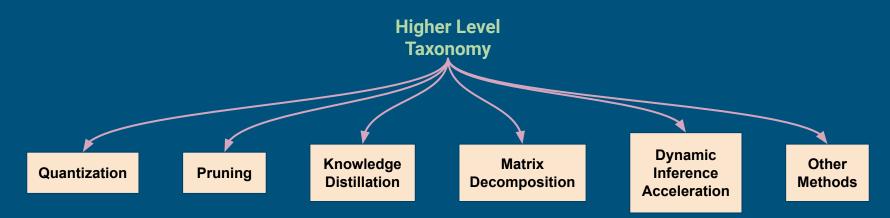


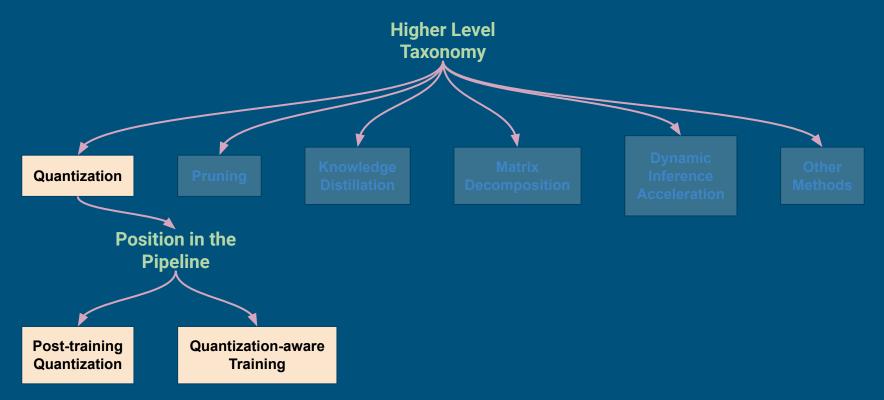
BERT Breakdown: Inference Latency

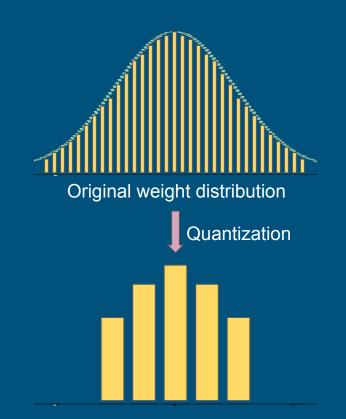


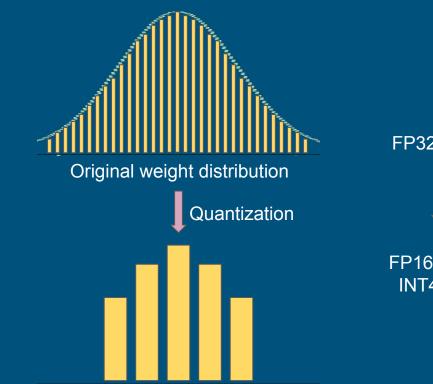
Model Compression

Compression Methods for BERT



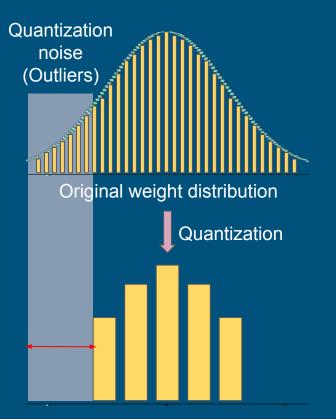


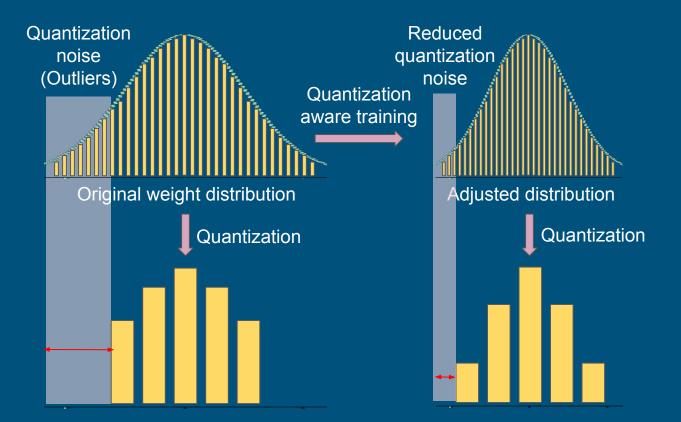


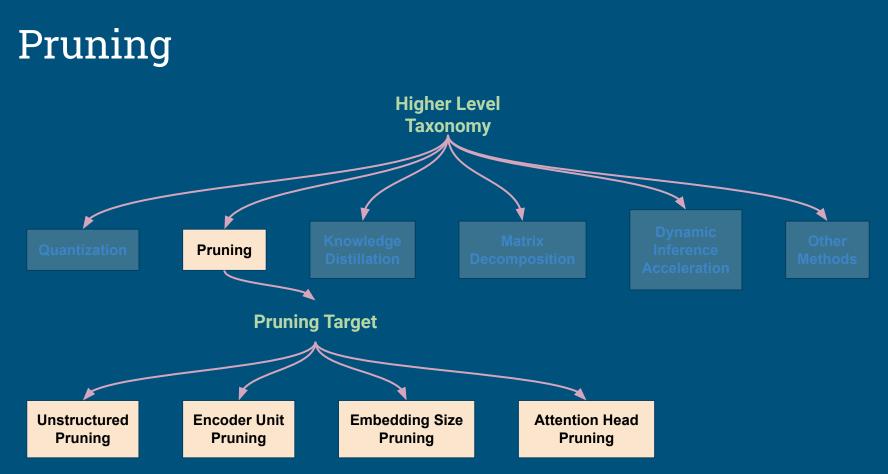


FP32/FP64

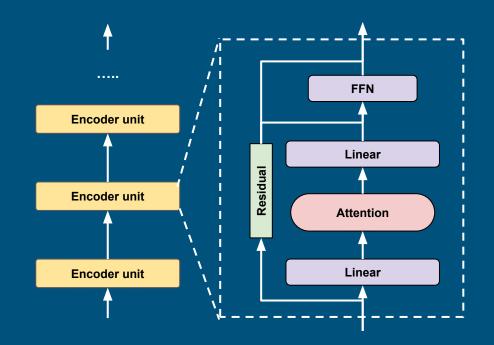
FP16, INT8, INT4, etc.



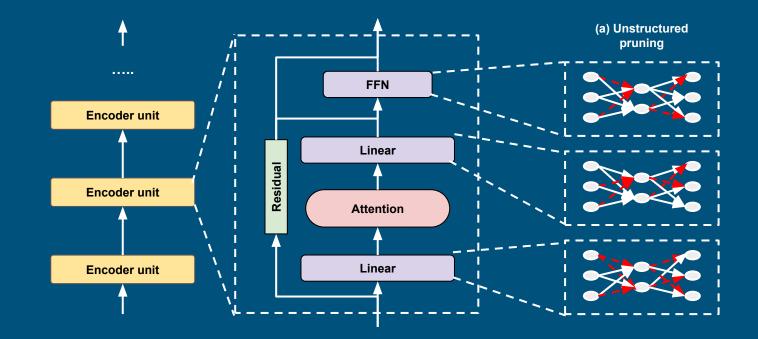




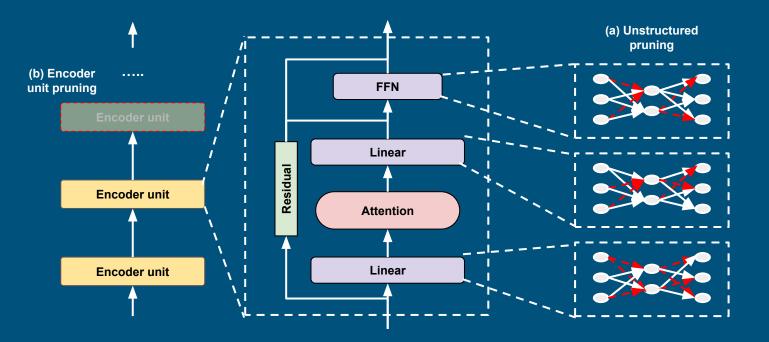
Pruning



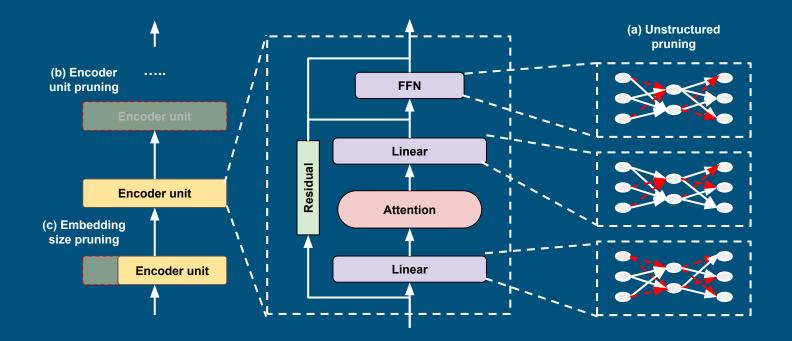
Pruning: Unstructured Pruning



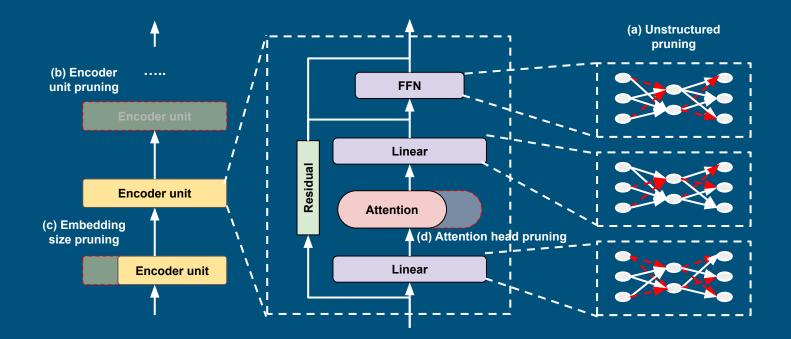
Pruning: Encoder Unit Pruning



Pruning: Embedding Size Pruning



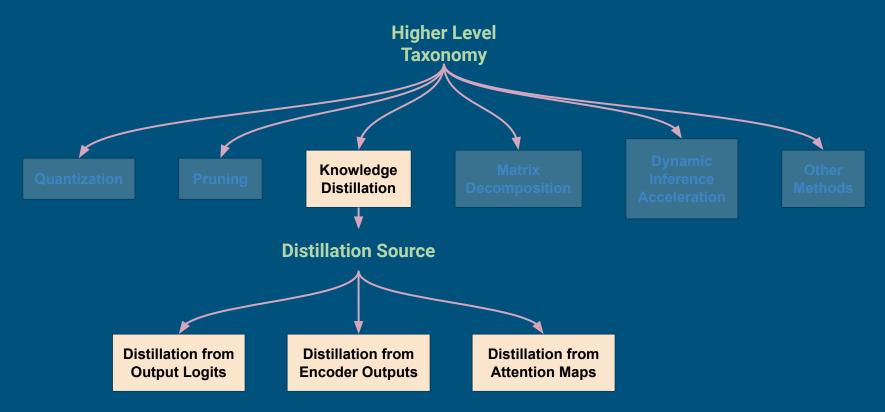
Pruning: Attention Head Pruning

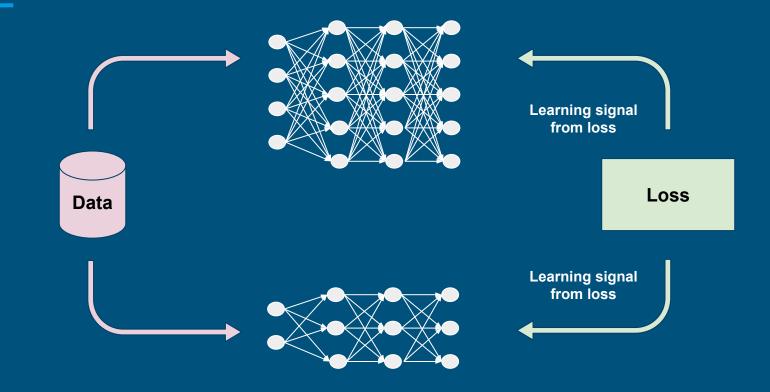


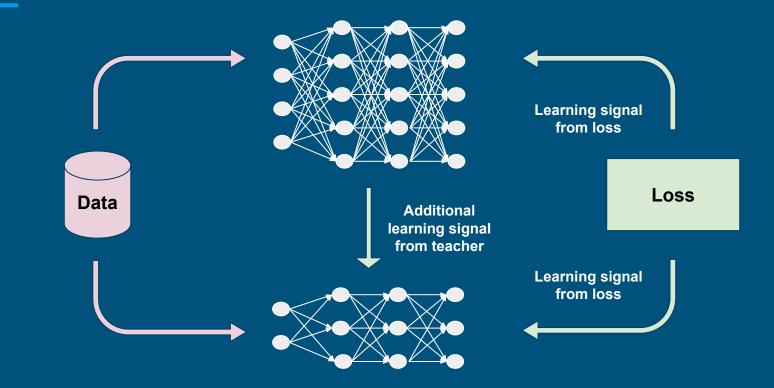
Recent Work in BERT Pruning

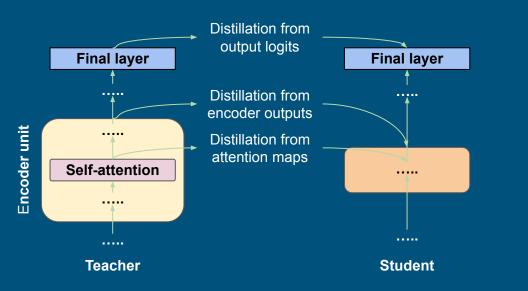
 Several papers have been published on pruning for BERT compression since the publication of our survey!!

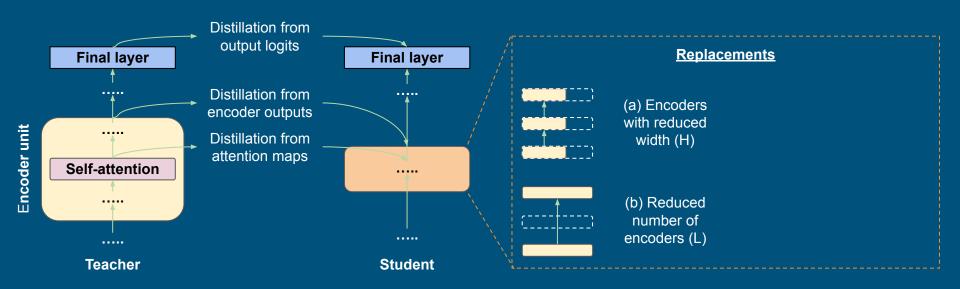
- Guo, Demi, et al. "Parameter-Efficient Transfer Learning with Diff Pruning." ACL-IJCNLP 2021.
- Xu, Dongkuan, et al. "Rethinking Network Pruning–under the Pre-train and Fine-tune Paradigm." NAACL 2021.
- Rotman, Guy, et al. "Model compression for domain adaptation through causal effect estimation." TACL 2021.
- Kovaleva, Olga, et al. "BERT Busters: Outlier Dimensions that Disrupt Transformers." ACL-IJCNLP 2021.
- Fan, Chun, et al. "Layer-wise Model Pruning based on Mutual Information." EMNLP 2021.
- Peer, David, et al. "Greedy-layer Pruning: Speeding up Transformer Models for Natural Language Processing." Pattern Recognition Letters 2022. 31



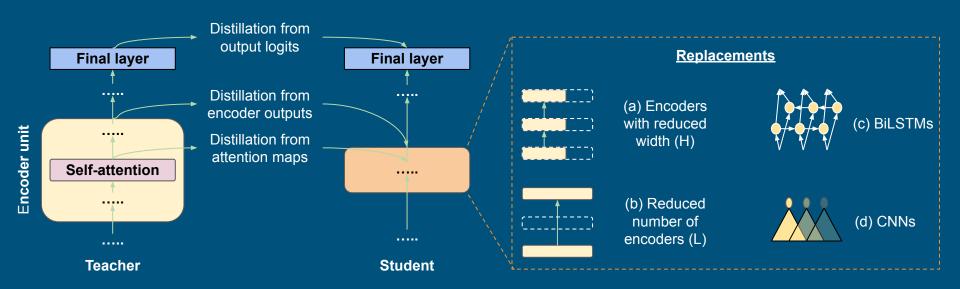


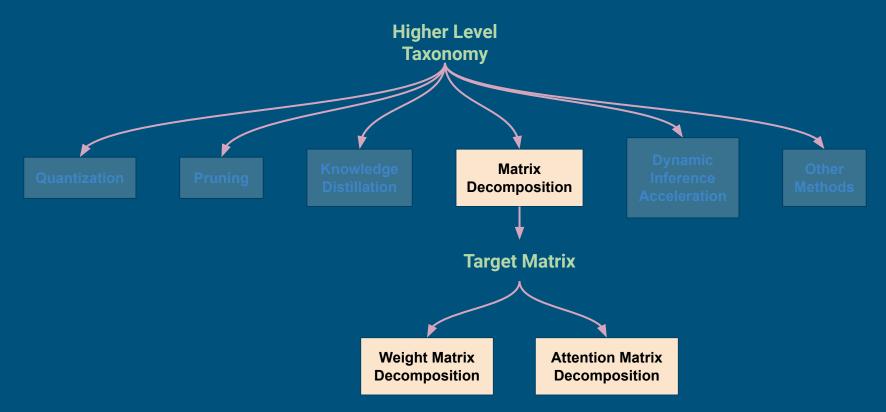




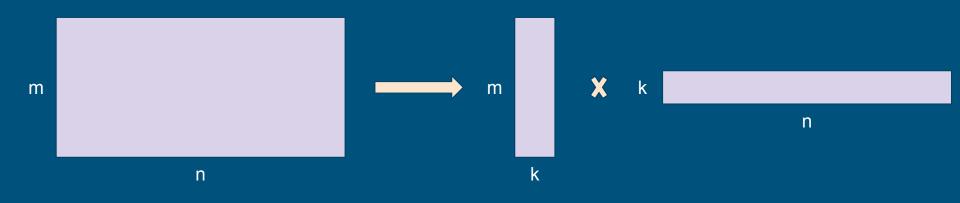


Knowledge Distillation



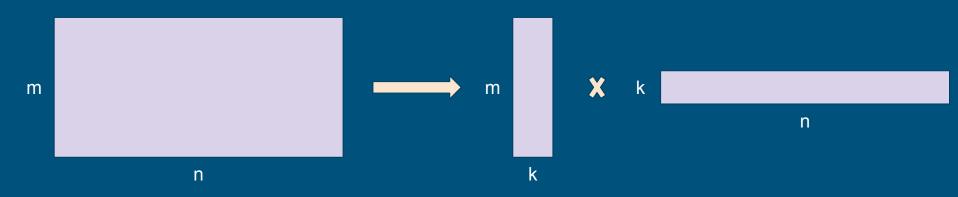


Weight matrix Decomposition



39

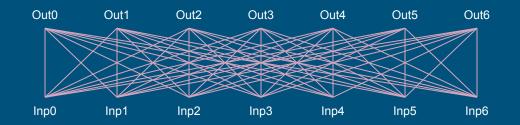
Weight matrix Decomposition



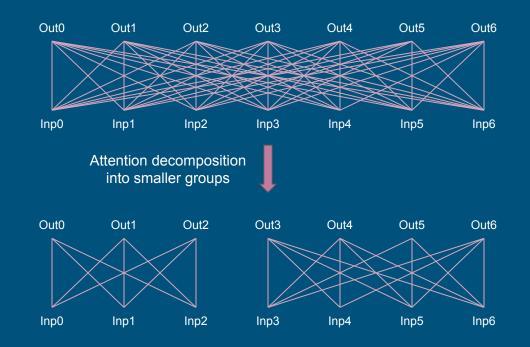
Significantly reduces number of parameters and computations for m,n >> k

40

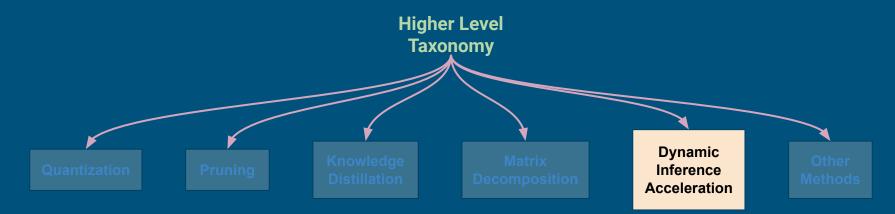
Attention matrix Decomposition



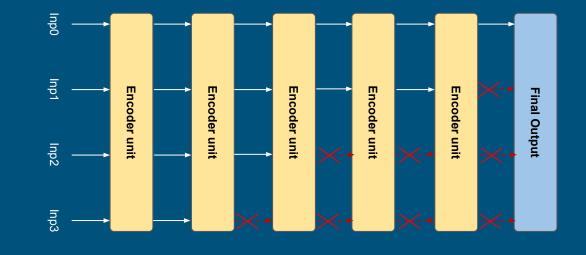
Attention matrix Decomposition



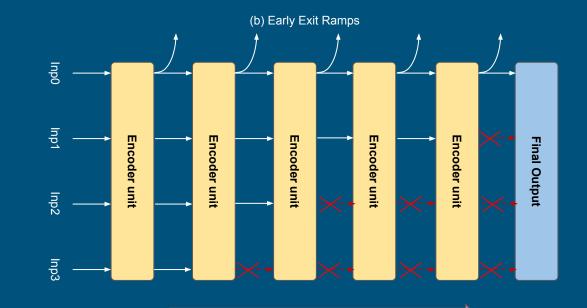
Dynamic Inference Acceleration

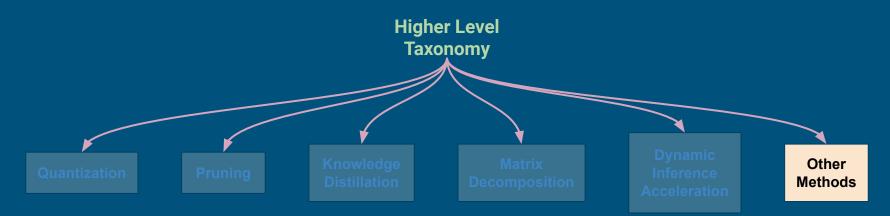


Dynamic Inference Acceleration

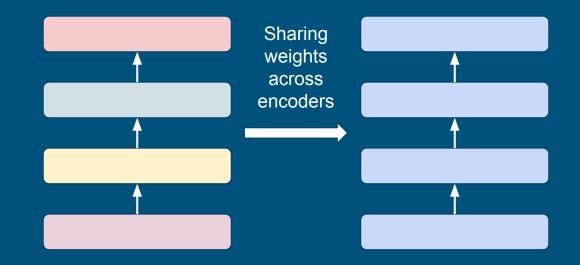


Dynamic Inference Acceleration

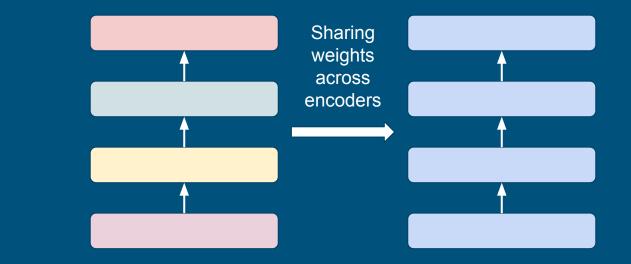




• Parameter Sharing: Sharing parameters across various encoders

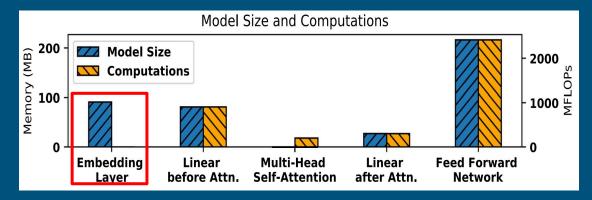


• Parameter Sharing: Sharing parameters across various encoders



More nuanced methods of parameter sharing have also been explored

- Parameter Sharing: Sharing parameters across various encoders
- Embedding Matrix Compression: Compressing the embedding matrix (e.g., by reducing the vocabulary size)



21% of total size

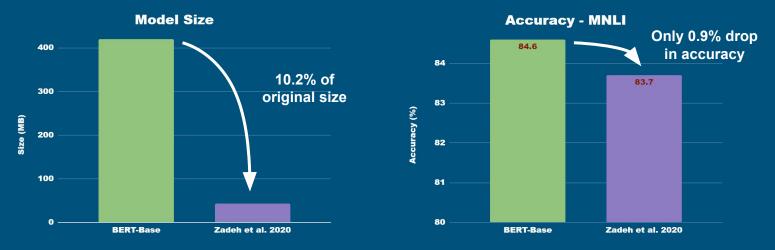
- Parameter Sharing: Sharing parameters across various encoders
- Embedding Matrix Compression: Compressing the embedding matrix (e.g., by reducing the vocabulary size)
- Weight Squeezing: Distilling 'weight' signal instead of output signals

Effectiveness of the Compression Methods

Quantization

Quantization is the best single compression method

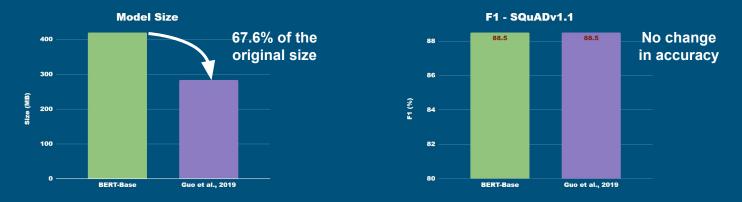
- can reduce model tenfold, with only 0.9% drop in accuracy
- yet, requires specialised hardware for inference speedup!



Zadeh, Ali Hadi, et al. "GOBO: Quantizing attention-based nlp models for low latency and energy efficient inference." IEEE/ACM MICRO 2020.

Pruning

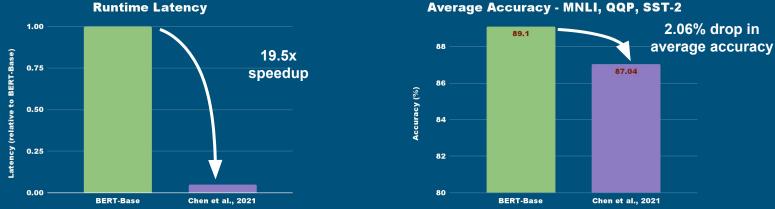
- A great method to reduce completely redundant weights
- Can reduce model size up to 67% of original size with no drop in accuracy
- Unstructured pruning has not been used to reduce the size of the embedding matrix (which takes 21% of the total model size)



Guo, Fu-Ming, et al. "Reweighted proximal pruning for large-scale language representation." arXiv preprint arXiv:1909.12486 (2019).

BiLSTM and CNN Student Models

- Knowledge distillation allows to train BiLSTM- and CNN-based students
- Existing work can achieve up to 19.5x speedup with only a 2.06% accuracy drop
- CNNs can provide special caching benefits due to local processing

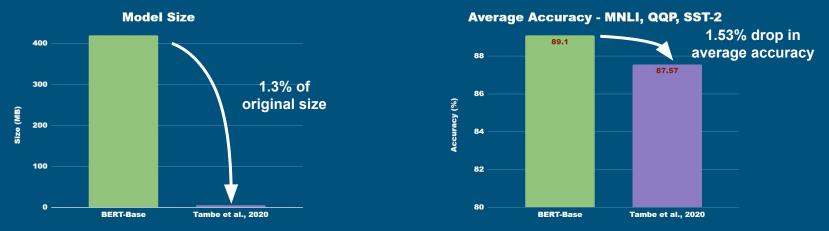


Average Accuracy - MNLI, QQP, SST-2

Chen, Daoyuan, et al. "AdaBERT: task-adaptive BERT compression with differentiable neural architecture search." IJCAI 2021.

Combining Compression Methods

- Combining multiple compression methods can filter out more redundancies
- Existing work in combining compression methods can reduce model size to only 1.3% of its original size with just 1.53% drop in accuracy!



Tambe, Thierry, et al. "Edgebert: Sentence-level energy optimizations for latency-aware multi-task nlp inference." IEEE/ACM MICRO 2021.

Combining Compression Methods

- Combining multiple compression methods can filter out more redundancies
- Existing work in combining compression methods can reduce model size to only 1.3% of its original size with just 1.53% drop in accuracy!
- More work in combining various compression methods was done since our publication!

• Choose an appropriate baseline

- Choose an appropriate baseline
- Use specialised hardware and accelerators

- Choose an appropriate baseline
- Use specialised hardware and accelerators
- Investigate the target setup
 - Choose appropriate quantization and pruning settings
 - Choose an appropriate student model

- Choose an appropriate baseline
- Use specialised hardware and accelerators
- Investigate the target setup
 - Choose appropriate quantization and pruning settings
 - Choose an appropriate student model
- Compound different compression methods
 - Combine multiple forms of compatible compression methods
 - Use knowledge distillation as a guide for other forms of compression

Thank You