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Is a uniform evaluation setup truly ‘fair’?
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What is the best method if the

developer is constrained to
hyperparameter setting 3?

’ What is the best method if the \
developer does not know the
hyperparameter setting in
advance, and thus wants the
most robust technique?
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No method is the "best” method in every context!

A comparative analysis limited to just one hyperparameter setting fails Combining results from multiple datasets can overshadow unique and
to capture the competitive performance of all algorithms. rare trends, effectively hiding the shortcomings of certain algorithms.
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Given the opportunity to perform hyperparameter optimization, most - Current one-dimensional approaches to benchmarking are
mitigation algorithms can provide competitive models! insufficient. Given the variability in fairness scores, the trends will
_dult bank marketing compas german be highly sensitive to the context. Thus, clarify the constraints of
210.0 BRI g - model deployment before benchmarking mitigation techniques.
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Accuracy Accuracy Accuracy work on a large-scale study of various choices like data processing,
evaluation metrics, etc., in an algorithm’s lifetime is needed.
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