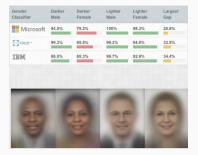


On The Impact of Machine Learning Randomness on Group Fairness

Prakhar Ganesh, Hongyan Chang, Martin Strobel, Reza Shokri FAccT 2023

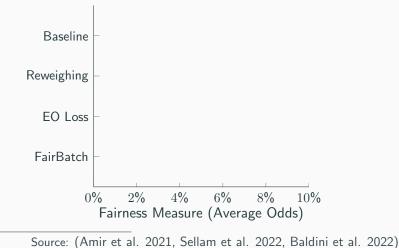
Machine Learning has a Fairness Problem

Bias in recidivism



Bias in gender classification

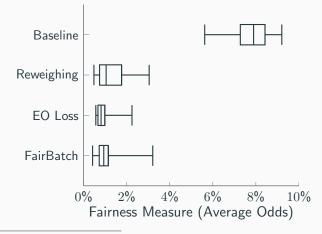
Source: (Angwin et al. 2016, Buolamwini, J., & Gebru, T. 2018)



But Fairness Measures Aren't Stable!

But Fairness Measures Aren't Stable!

Model fairness can vary significantly across random seeds.



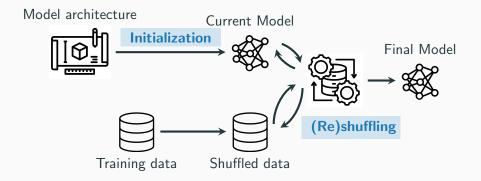
Executing multiple training runs with changing random seeds to capture overall fairness variance.

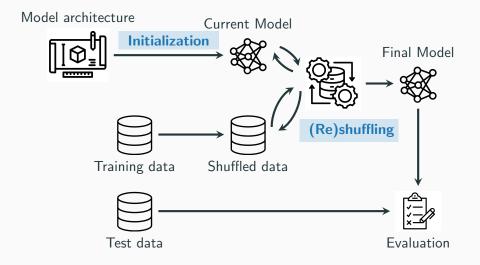
Executing multiple training runs with changing random seeds to capture overall fairness variance.

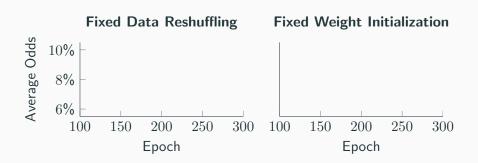
Blindly executing training runs

- is expensive,
- raises the bar to do fair ML research,
- lacks the understanding of the underlying cause for high fairness variance.

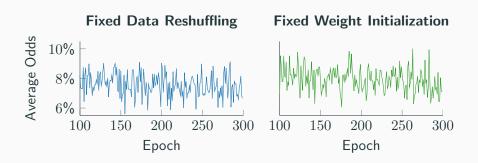
The Sources of Randomness

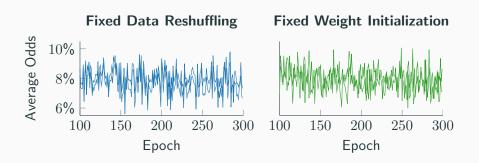


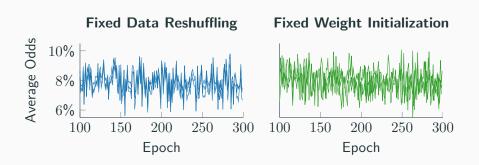


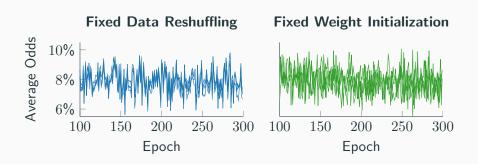


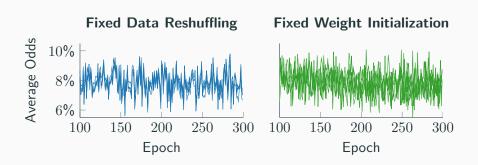
1 Run

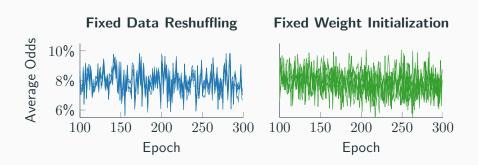


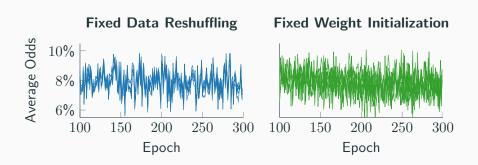


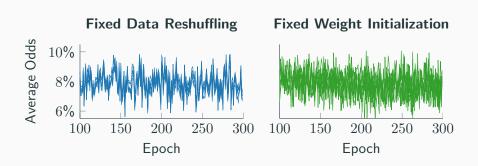


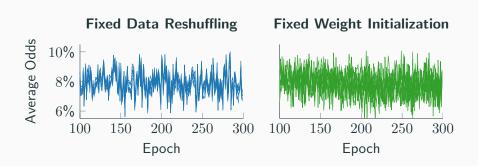


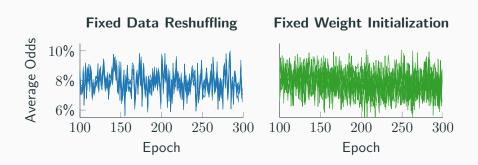


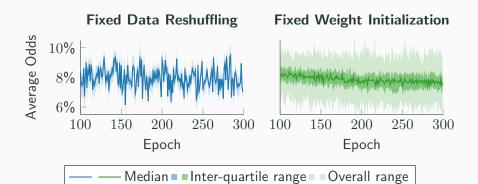












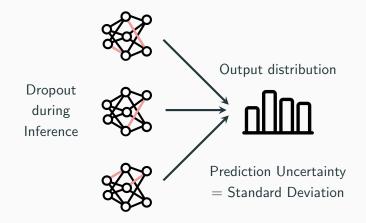
Fairness Variance Beyond Randomness

Measuring Uncertainty: Monte-Carlo Dropout

Dropout during Inference

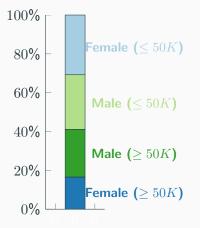
Source: (Gal, Y., & Ghahramani, Z. 2016)

Measuring Uncertainty: Monte-Carlo Dropout



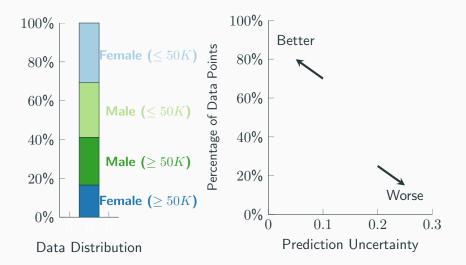
Source: (Gal, Y., & Ghahramani, Z. 2016)

Prediction Uncertainty Across Groups

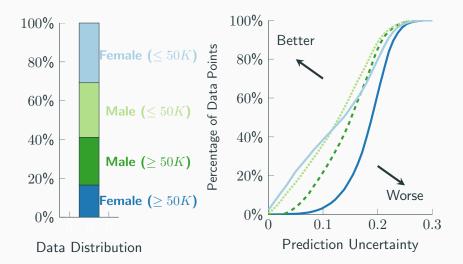


Data Distribution

Prediction Uncertainty Across Groups

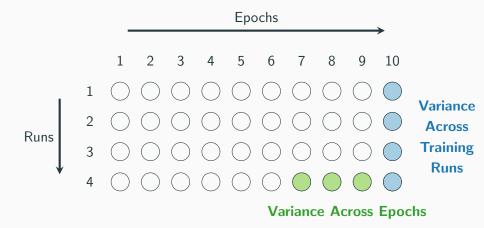


Prediction Uncertainty Across Groups

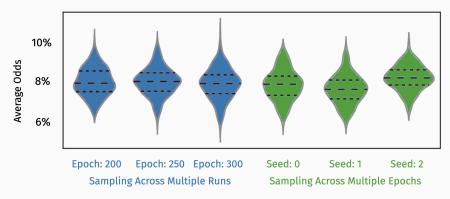


Applications

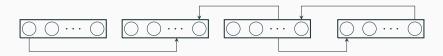
Variance Across Epochs vs Training Runs



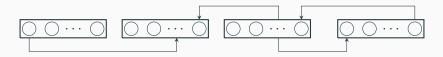
The distribution of fairness scores **across multiple runs** is 'equal' to the distribution of fairness scores **across epochs in any single run**.



Guiding Principle: The most recent gradient updates seen by the model have a significant influence on its fairness scores!



Guiding Principle: The most recent gradient updates seen by the model have a significant influence on its fairness scores!



EqualOrder

To improve fairness scores

AdvOrder

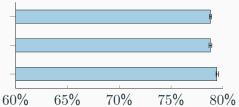
To adversarially introduce bias

Bias Mitigation with Data Order

Bias Mitigation with Data Order

 F_1 -Score

Single Epoch of AdvOrder - Single Epoch of EqualOrder - No additional training -



19

Takeaways

• Data reshuffling is the dominant cause of fairness variance.

- Data reshuffling is the dominant cause of fairness variance.
- Under-represented groups are more sensitive to the randomness.

Takeaways

- Data reshuffling is the dominant cause of fairness variance.
- Under-represented groups are more sensitive to the randomness.
- Fairness distribution across multiple runs is equal to that across epochs within a single run, thus bypassing multiple training runs

Takeaways

- Data reshuffling is the dominant cause of fairness variance.
- Under-represented groups are more sensitive to the randomness.
- Fairness distribution across multiple runs is equal to that across epochs within a single run, thus bypassing multiple training runs
- Controlling data order alone can manipulate group-level accuracies.

- Data reshuffling is the dominant cause of fairness variance.
- Under-represented groups are more sensitive to the randomness.
- Fairness distribution across multiple runs is equal to that across epochs within a single run, thus bypassing multiple training runs
- Controlling data order alone can manipulate group-level accuracies.

Scan the QR Code for the paper

Feel free to contact us at: pganesh@u.nus.edu