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Machine Learning has a Fairness Problem

Bias in recidivism

aaaaaaaa
Bias in gender

classification

Source: (Angwin et al. 2016, Buolamwini, J., & Gebru, T. 2018)
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But Fairness Measures Aren’t Stable!

Model fairness can vary significantly across random seeds.
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Existing Solutions

Executing multiple training runs with changing random seeds to capture

overall fairness variance.

Blindly executing training runs

• is expensive,

• raises the bar to do fair ML research,

• lacks the understanding of the underlying cause for high

fairness variance.
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The Sources of Randomness



Weight Initialization and Data Reshuffling

8



Weight Initialization and Data Reshuffling

Current ModelModel architecture
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Training data Shuffled data

Final Model
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Test data Evaluation
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Variance Across Epochs
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Fairness Variance Beyond

Randomness



Measuring Uncertainty: Monte-Carlo Dropout

Dropout

during

Inference

Output distribution

Prediction Uncertainty

= Standard Deviation

Source: (Gal, Y., & Ghahramani, Z. 2016)
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Prediction Uncertainty Across Groups
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Applications



Variance Across Epochs vs Training Runs
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Variance Across Epochs vs Training Runs

The distribution of fairness scores across multiple runs is ’equal’ to the

distribution of fairness scores across epochs in any single run.
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Manipulating Fairness with Data Order

Guiding Principle: The most recent gradient updates seen by the model

have a significant influence on its fairness scores!

. . . . . . . . . . . .

EqualOrder

To improve fairness scores

AdvOrder

To adversarially introduce bias
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Bias Mitigation with Data Order
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Takeaways

• Data reshuffling is the dominant cause of fairness variance.

• Under-represented groups are more sensitive to the randomness.

• Fairness distribution across multiple runs is equal to that across

epochs within a single run, thus bypassing multiple training runs

• Controlling data order alone can manipulate group-level accuracies.

Scan the QR Code

for the paper

Feel free to contact us at:

pganesh@u.nus.edu
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