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Before we start … 

Ask questions anytime! 

Contact Prakhar: prakhar.ganesh@mila.quebec 

mailto:prakhar.ganesh@mila.quebec
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Bootcamp Week 2 Pulse Check - How’s 
everyone doing?
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Before we start … 

Bootcamp Week 2 Pulse Check - How’s 
everyone doing? 

Any questions from the last 3 “intro to ML” 
sessions you want to clarify before moving on?

We’ll also do a recap on the go!

Some slides borrowed from Intro to ML sessions 1, 2, 3 by Mélisande and Niki



7

Goals today…

- Understand the importance of iterative learning.
- Derivatives
- Gradient Descent
- Why nonlinear models?
- Bringing it all together: We’ll follow the training 

of a neural network from start to end!
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points

Connect the points
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Example: Draw a circle through 3 points

Draw perpendiculars 
from the center



11

Example: Draw a circle through 3 points

Intersection is the center. 
Distance is the radius.
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Example: Draw a circle through 3 points

We got the circle.
Perfect!
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Example: Draw a circle through 3 points

Closed-form solution
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points

Improve!
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points

Improve!
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Example: Draw a circle through 3 points

Good enough.
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Example: Draw a circle through 3 points

Closed-form solution Iterative learning
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Example: Draw a circle through 3 points

Closed-form solution
- Gives you the exact solution.
- Can be quick (only once a 

method has been defined!)
- Can be too complex to solve!

Iterative learning
- Can only give you a good 

enough solution.
- Can be time consuming.
- (Almost) always works! 
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Example: Linear Regression
Recall Linear Regression

+b
+b

and b is also a parameter.
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Example: Linear Regression
Blood pressure = w*Dosage + b
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Example: Linear Regression

Closed-form solution

Blood pressure = w*Dosage + b
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Example: Linear Regression
Blood pressure = w*Dosage + b

Good enough.
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Example: Linear Regression
Blood pressure = w*Dosage + b

Closed-form solution Iterative learning
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Example: Logistic Regression
Recall Logistic Regression
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Example: Logistic Regression
Classify iris flowers
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Example: Logistic Regression
Classify iris flowers

Closed-form solution
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Example: Logistic Regression
Classify iris flowers

Closed-form solution

Doesn’t exist!
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Example: Logistic Regression
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Example: Logistic Regression
Classify iris flowers
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Example: Logistic Regression
Classify iris flowers
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Example: Logistic Regression
Classify iris flowers
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Example: Logistic Regression
Classify iris flowers

Good enough.
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Example: Logistic Regression
Classify iris flowers

Closed-form solution

Doesn’t exist!

Iterative learning
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Closed-form vs Iterative Learning

Closed-form Solution

- Can provide an exact answer without 
approximations.

- Once derived, the solution can be 
computed very quickly, often in 
constant time.

- Deriving a closed-form solution can 
be complex and is not always 
possible for every problem.

Iterative Learning

- Only provides good enough answers.

- Each iteration can be expensive, and 
the total time depends on the 
number of iterations.

- Highly flexible and can be applied to 
a wide range of problems, including 
those without closed-form solutions.
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Closed-form vs Iterative Learning

Closed-form Solution

- Can provide an exact answer without 
approximations.

- Once derived, the solution can be 
computed very quickly, often in 
constant time.

- Deriving a closed-form solution can 
be complex and is not always 
possible for every problem.

Iterative Learning

- Only provides good enough answers.

- Each iteration can be expensive, and 
the total time depends on the 
number of iterations.

- Highly flexible and can be applied to 
a wide range of problems, including 
those without closed-form solutions.

Moving towards a more 

‘general’ form of learning!
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But how do we ‘quantify’ getting better?
Recall Loss Functions
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But how do we ‘quantify’ getting better?
Recall Empirical Risk Minimization
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But how do we ‘quantify’ getting better?

➔ Loss functions/Empirical Risk are a measure of how ‘good’ is our 
solution (Lower is better!)

➔ To get ‘better’ is to reduce loss.

➔ How to reduce loss? How to minimize the empirical risk?
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Derivatives

How familiar is everyone with derivatives?
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Derivatives

Derivative of a function f(x) with 
respect to x is - How much would f(x) 
change (rate of change) if we changed 
x by 𝚫x (which is really small)?
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Derivatives

Consider f(x) = x2Derivative of a function f(x) with 
respect to x is - How much would f(x) 
change (rate of change) if we changed 
x by 𝚫x (which is really small)?
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Consider f(x) = x2

Derivatives
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Consider f(x) = x2
x = 1 and Δx = 1

tan(θ) = 3

Derivatives
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Consider f(x) = x2
x = 1 and Δx = 0.5

tan(θ) = 2.5

Derivatives
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Consider f(x) = x2
x = 1 and Δx = 0.25

tan(θ) = 2.25

Derivatives
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Consider f(x) = x2
x = 1 and Δx → 0

tan(θ) = 2

Derivatives
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➔ Derivative of a function at a point is the rate of change of a function at 
that point.

➔ Derivative of a function at a point is the slope of the tangent line at that 
point.

➔ Also written as f’(x)

Derivatives
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Break
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➔ Derivative of a function at a point is the rate of change of a function at 
that point.

➔ Derivative of a function at a point is the slope of the tangent line at that 
point.

➔ Also written as f’(x)

Derivatives
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➔ Derivative of a function at a point is the rate of change of a function at 
that point.

➔ Derivative of a function at a point is the slope of the tangent line at that 
point.

➔ Also written as f’(x)

But why do we care about derivatives?

Derivatives
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Special Case: Closed-form Solutions

Let’s go back to f(x) = x2
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Special Case: Closed-form Solutions

Anything special 
about the derivative 
at the minimum?
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Special Case: Closed-form Solutions

Anything special 
about the derivative 
at the minimum?

It’s a horizontal line!

That means, 
derivative is zero!
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Special Case: Closed-form Solutions

Anything special 
about the derivative 
at the minimum?

It’s a horizontal line!

That means, 
derivative is zero!

f(x) = x2

We know f’(x) = 2x

f’(x) = 0
→ 2x = 0
→ x = 0
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Special Case: Closed-form Solutions

➔ f’(x) = 0 is the point where the rate of change is 0, i.e., the function 
doesn’t change. 
This will happen at the minimum value of a function! (although it can 
also happen at other places)
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Special Case: Closed-form Solutions

➔ f’(x) = 0 is the point where the rate of change is 0, i.e., the function 
doesn’t change. 
This will happen at the minimum value of a function! (although it can 
also happen at other places)

➔ That’s how we got the values for linear regression.
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Special Case: Closed-form Solutions

➔ f’(x) = 0 is the point where the rate of change is 0, i.e., the function 
doesn’t change. 
This will happen at the minimum value of a function! (although it can 
also happen at other places)

➔ That’s how we got the values for linear regression.

➔ But this is useful only if we can solve it! (We couldn’t solve it for logistic 
regression)
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Gradient Descent

Let’s go back to f(x) = x2
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f’(x) = 3

Gradient Descent
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f’(x) = 3

f’(x) = 2

Gradient Descent
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f’(x) = 2f’(x) = -2

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2
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Gradient Descent
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How can we ‘minimize’ f(x)?

f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

How can we ‘minimize’ f(x)?

Move in the negative 
direction; Move a lot

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

How can we ‘minimize’ f(x)?

Move in the positive 
direction; Move a little

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

How can we ‘minimize’ f(x)?

Move in the positive 
direction; Move a lot

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

How can we ‘minimize’ f(x)?

Gradient Descent
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f’(x) = 3

f’(x) = 2f’(x) = -2

f’(x) = -3

How can we ‘minimize’ f(x)?

Move in the direction 
OPPOSITE of the derivative

Move the amount 
proportional to the derivative

Gradient Descent
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Gradient Descent
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Gradient Descent

Rate of change of loss 
w.r.t. the parameter
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Gradient Descent

Rate of change of loss 
w.r.t. the parameter

Learning Rate
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Gradient Descent

Rate of change of loss 
w.r.t. the parameter

Learning Rate

Current value of the 
parameter
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Gradient Descent

Rate of change of loss 
w.r.t. the parameter

Learning Rate

Current value of the 
parameter

Improved value of the 
parameter
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Gradient Descent

Learning rate = 0.2

xnew = x - 0.2*f’(x)

f’(2) = 4

xnew = 2 - 0.2*4

xnew = 1.2
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Gradient Descent

Learning rate = 0.2

xnew = x - 0.2*f’(x)

f’(1.2) = 2.4

xnew = 1.2 - 0.2*2.4

xnew = 0.72
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Gradient Descent

Learning rate = 0.2

xnew = x - 0.2*f’(x)

f’(0.72) = 1.44

xnew = 0.72 - 0.2*1.44

xnew = 0.432
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Gradient Descent

Learning rate = 0.2

xnew = x - 0.2*f’(x)

f’(0.432) = 0.864

xnew = 0.432 - 
0.2*0.864

xnew = 0.2592
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Gradient Descent

Learning rate = 0.2
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Problems with Gradient Descent

➔ Sensitivity to the learning rate

➔ Doesn’t work with non-differentiable functions

➔ Can get stuck in local minima
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Sensitivity to Learning Rate

Learning rate = 0.01 Learning rate > 1
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Needs differentiable functions

Image source: https://www.varsitytutors.com/hotmath/hotmath_help/topics/step-function
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Can get stuck in local minima

Image source: Elkarashily, Ahmed, et al. "VLSI Placement using Modified Parallel Simulated Annealing."
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Why nonlinear learning?

➔ We saw iterative learning (gradient descent) is needed when we want to 
learn nonlinear functions.

➔ But why do we need nonlinear functions? Is linear not enough?
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

A

B

0 1

0

1

0 1

1 0
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

A

B

0 1

0

1

0 1

1 0

Linear classification 
does not work.
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

A

B

0 1

0

1

0 1

1 0

Linear classification 
does not work.
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

A

B

0 1

0

1

0 1

1 0

Linear classification 
does not work.
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How to do nonlinear learning?

➔ Can we combine linear boundaries to perform nonlinear learning?
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

A

B

0 1

0

1

0 1

1 0
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Example: XOR Problem

Image source: https://www.build-electronic-circuits.com/xor-gate/

New variables

C = A AND (NOT B)

D = (NOT A) AND B

A B C D

0 0 0 0

0 1 0 1

1 0 1 0

1 1 0 0
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Example: XOR Problem

A

B

0 1

0

1

0 1

1 0

C

D

0 1

0

1

0 1

1

0

A B C D
0 0 0 0
0 1 0 1
1 0 1 0
1 1 0 0
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Example: XOR Problem

A

B

0 1

0

1

0 1

1 0

C

D

0 1

0

1

0 1

1

0

Linear classification 
is now possible.
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Example: XOR Problem

A

B

XOR

Linear classification 
does not work.



109

Example: XOR Problem

A

B

XOR

AND

AND

NOT

NOT

Linear classification 
is now possible.
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Example: XOR Problem

A

B

AND
NOT

A

B

0 1

0

1

0 1

1 0

(NOT A) AND B
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Example: XOR Problem

A

B

0 1

0

1

0 1

1 0
A

B AND
NOT

A AND (NOT B)
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Example: XOR Problem

A

B

0 1

0

1

0 1

1 0

(NOT A) AND B

A AND (NOT B)

We combined two linear 
boundaries to form a more 
complicated boundary!!
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How to do nonlinear learning?

➔ Can we combine linear boundaries to perform nonlinear learning? YES!
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How to do nonlinear learning?

➔ Can we combine linear boundaries to perform nonlinear learning? YES!

Recall Logistic regression
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How to do nonlinear learning?

➔ Can we combine linear boundaries to perform nonlinear learning? YES!

Recall Logistic regression

We’ll call this a 
‘perceptron’
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Perceptron

x1

x2

Perceptron

w1

w2



117

Perceptron

x1

x2

Perceptron

w1

w2
Note: Perceptrons are defined for various 

‘activation functions’. We are using 𝛔(x) for 
our example (hence, logistic regression).
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Perceptron

x1

x2

Perceptron

w1

w2

Image source: https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
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Perceptron

x1

x2

Perceptron

w1

w2
Perceptrons are also 

called ‘Neurons’

Image source: https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
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Multi-layer Perceptron
Each perceptron can only create a linear boundary.
But together, they can do so much more!!
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Multi-layer Perceptron
Each perceptron can only create a linear boundary.
But together, they can do so much more!!

x

y
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x

y
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Multi-layer Perceptron
Each perceptron can only create a linear boundary.
But together, they can do so much more!!

x

y

……
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Multi-layer Perceptron
Each perceptron can only create a linear boundary.
But together, they can do so much more!!

Multi-layer perceptrons (of infinite width) are universal 
approximators!!
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Break
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Training our own MLP

Move to Colab

https://colab.research.google.com/drive/1bQbPW9cVpqyDEmbGzBCODU2zF5zuhkJa?usp=sharing

