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Before we start ...

Ask questions anytime!

Contact Prakhar: prakhar.ganesh@mila.quebec
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Before we start ...

Bootcamp Week 2 Pulse Check - How’s
everyone doing?

Any questions from the last 3 “intro to ML”
sessions you want to clarify before moving on?

We’ll also do a recap on the go!

Some slides borrowed from Intro to ML sessions 1, 2, 3 by Mélisande and Niki #Mila



Goals today...

- Understand the importance of iterative learning.

- Derivatives

- Gradient Descent

- Why nonlinear models?

- Bringing it all together: We’ll follow the training
of a neural network from start to end!
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points

We got the circle.
Perfect!
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Example: Draw a circle through 3 points

Closed-form solution
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Example: Draw a circle

through 3 points
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Example: Draw a circle

through 3 points

.
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points
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Example: Draw a circle through 3 points

20




Example: Draw a circle

Closed-form solution

through 3 points

.
.

Iterative learning
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Example: Draw a circle through 3 points

/
/
Closed-form solution Iterative learning
- Gives you the exact solution. - Can only give you a good
- Can be quick (only once a enough solution.
method has been defined!) - Can be time consuming.
- Can be too complex to solve! - (Almost) always works!




Example: Linear Regression

Recall Linear Regression

- regression problem

- input: feature vector x = (X;, X,, ..., Xn)ER"
- target: scalar yeR

Linear regression implies that its output is a linear 2]
function of the input.

T

J = w1, + wexo + + wWpx, = W X +b
+b a ) é 2 4
w = (W, W,, ..., W) €R" is a vector of parameters.

and b is also a parameter.




Example: Linear Regression

Blood pressure = w*Dosage + b
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Example: Linear Regression
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Systolic Blood Pressure
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Example: Linear Regression

Blood pressure = w*Dosage + b
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Example: Linear Regression

Blood pressure = w*Dosage + b
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Systolic Blood Pressure
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Example: Linear Regression

Blood pressure = w*Dosage + b
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Example: Linear Regression

Blood pressure = w*Dosage + b
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Example: Linear Regression

Blood pressure = w*Dosage + b

Systolic Blood Pressure

140

135 A

=

w

o
L

=
N
v

-
N
o

115 A

0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0
Drug Dosage (mg)

Good enough.
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Example: Linear Regression

Blood pressure = w*Dosage + b
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Example: Logistic Regression

Recall Logistic

y=wx + b
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Example: Logistic Regression

Classify iris flowers
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Example: Logistic Regression

Classify iris flowers
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Example: Logistic Regression

Classify iris flowers
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Classify iris flowers
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Example: Logistic Regression

Classify iris flowers

Petal Width (cm)
= <
» o o =)

=
N

B
o

3.0 35

4.0

4.5 5.0 5.5
Petal Length (cm)

® virginica
® versicolor

6.0

6.5

7.0

37

# Mila



Example: Logistic Regression

Classify iris flowers

Petal Width (cm)
= <
» o o =)

=
N

B
o

3.0 35

4.0

4.5 5.0 5.5
Petal Length (cm)

® virginica
® versicolor

6.0

6.5

7.0

38

# Mila



Example: Logistic Regression

Classify iris flowers

Petal Width (cm)
= <
» o o =)

=
N

B
o

3.0 35

4.0

4.5 5.0 5.5
Petal Length (cm)

® virginica
® versicolor

6.0

6.5

7.0

39

# Mila



Example: Logistic Regression

Classify iris flowers
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Example: Logistic Regression
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Closed-form vs lterative Learning

Closed-form Solution |terative Learning

- Can provide an exact answer without - Only provides good enough answers.
approximations.

- Once derived, the solution can be - Each iteration can be expensive, and
computed very quickly, often in the total time depends on the
constant time. number of iterations.

- Deriving a closed-form solution can - Highly flexible and can be applied to
be complex and is not always a wide range of problems, including
possible for every problem. those without closed-form solutions.
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Closed-form vs lterative Learning

Closed-form Solution |terative Learning

- Can provide an exact answer without Only provides good enough answers.

approximations.

- Once derived, the solution can be - Each iteration can be expensive, and
computed very quickly, often in the total time depends on the
constant time. number of iterations.

- Deriving a closed-form solution can - Highly flexible and can be applied to
be complex and is not always a wide range of problems, including
possible for every problem. those without closed-form solutions.
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But how do we ‘quantify’ getting better?

Recall Loss Functions

- During training, we want to measure the discrepancy between the
target variables y and the outcome of the hypotheses h(x).

- Loss function: L(y, h(x))
A loss function quantifies how poorly h(x) approximates y

- smaller values of L(y, h(x)) are better
- generally, L(y, y)=0 and L(y, h(x)) > O for all (x,y)

a4




But how do we ‘quantify’ getting better?

Recall Empirical Risk Minimization

The empirical risk is the average loss over all observed data points
in the dataset.

N N
1 Z i 1 Z : ;
—1 5—1

If the empirical risk is small, we say that the predictor fits the data
well (according to the loss L).

Note: we used 0 because that is how you will see the empirical risk written in most
textbooks, but it corresponds to our w!
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But how do we ‘quantify’ getting better?

=> Loss functions/Empirical Risk are a measure of how ‘good’ is our
solution (Lower is better!)

=> To get ‘better’ is to reduce loss.

How to reduce loss? How to minimize the empirical risk?

46




Derivatives

How familiar is everyone with derivatives?

47




Derivatives

Derivative of a function f(x) with
respect to x is - How much would f(x)

change (rate of change) if we changed
x by Ax (which is really small)?
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Derivatives

Derivative of a function f(x) with
respect to x is - How much would f(x)

change (rate of change) if we changed
x by Ax (which is really small)?

@) . fetAr) — @)

dx Az—0 Azx
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Derivatives

Derivative of a function f(x) with
respect to x is - How much would f(x)

change (rate of change) if we changed
x by Ax (which is really small)?

@) . fetAr) — @)

dx Az—0 Azx

Consider f(x) = x2

df (x)

dx

= lim
Azx—()

(z + Az)? — 22

Az

50




Derivatives

Derivative of a function f(x) with Consider f(x) = x2
respect to x is - How much would f(x) . s
change (rate of change) if we changed df (x) _ lim (z+ Az)* -
x by Ax (which is really small)? dr  Az0 Az

df () . 2%+ (Ax)? + 22(Azx) — 22
= lim
dx Ar—0 Ax

@) . fetAr) — @)

dx Az—0 Az




Derivatives

Derivative of a function f(x) with
respect to x is - How much would f(x)

change (rate of change) if we changed
x by Ax (which is really small)?

@) . fetAr) — @)

dx Az—0 Az

Consider f(x) = x2

df (z)

dx

df (x)

dx

df(xz)

dr

(z + Az)? — 22

I
Ayl}n Az
. 2%+ (Ax)? + 22(Azx) — 22
= lim
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lim ( 2 )
Az—0 Axr
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Derivatives

Derivative of a function f(x) with Consider f(x) = x?
respect to x is - How much would f(x) ‘ o
change (rate of change) if we changed df () _ i (z + A.J') — &
x by Ax (which is really small)? dx Az—0 Az
df(z) .. 2%+ (Az)*+ 22(Az) — 22
= lim
df( ) f( I A ) f( ) dx Ax—0 FAV
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Derivatives

Derivative of a function f(x) with
respect to x is - How much would f(x)

change (rate of change) if we changed
x by Ax (which is really small)?
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Derivatives

Consider f(x) = x?
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Derivatives
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Derivatives

x =1and Ax = 0.5
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Derivatives

Consider f(x) = x?
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Derivatives

x=1land Ax > 0

. S
Consider f(x) = x f(1+ Az) — F(1)

lim =
Ar—0 Ar
45 === = = = - 1
| | 4.0
3.5 1
| | 35
3.0 1 |
3.0
- | |
: 2.5 1
5 | | "
x *
I 2.0 i | Il 2.0
x =
- 1.5 1 I I 15
| |
1.0 1
1.0 1 I I
| | > ' '
051 tan(0) = 2
l I 0000 025 050 o075 100 125 150 175 200
0.0 T T T | —r — X
-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X




Derivatives

=> Derivative of a function at a point is the rate of change of a function at
that point.

=> Derivative of a function at a point is the slope of the tangent line at that
point.

=> Also written as f’(x)

60




Break
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Derivatives

=> Derivative of a function at a point is the rate of change of a function at
that point.

=> Derivative of a function at a point is the slope of the tangent line at that
point.

=> Also written as f’(x)
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Derivatives

=> Derivative of a function at a point is the rate of change of a function at
that point.

=> Derivative of a function at a point is the slope of the tangent line at that
point.

=> Also written as f’(x)

But why do we care about derivatives?
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Special Case: Closed-form Solutions

Let’s go back to f(x) = x2
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Special Case: Closed-form Solutions
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Special Case: Closed-form Solutions

Anything special
about the derivative
at the minimum?

It’s a horizontal line!

That means,
derivative is zero!
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Special Case: Closed-form Solutions

Anything special
about the derivative
at the minimum? z

It’s a horizontal line!

That means,
derivative is zero!
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f(x) = x?

We know f’(x) = 2x

f’x) =0
- 2x =0
-x=0
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Special Case: Closed-form Solutions

= £ (x) =0 is the point where the rate of change is 0, i.e., the function
doesn’t change.

This will happen at the minimum value of a function! (although it can
also happen at other places)
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Special Case: Closed-form Solutions

= £ (x) =0 is the point where the rate of change is 0, i.e., the function
doesn’t change.

This will happen at the minimum value of a function! (although it can
also happen at other places)

=> That’s how we got the values for linear regression.

D BIC ) b D D N D Y—w)
n) zi — (=) B n
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Special Case: Closed-form Solutions

= £ (x) =0 is the point where the rate of change is 0, i.e., the function

-

doesn’t change.

This will happen at the minimum value of a function! (although it can
also happen at other places)

That’s how we got the values for linear regression.

D BIC ) b D D N D Y—w)
n) zi — (=) B n

But this is useful only if we can solve it! (We couldn’t solve it for logistic
regression)
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Gradient Descent

Let’s go back to f(x) = x2
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Gradient Descent

£(x) = 3
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Gradient Descent

£(x) = 3
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Gradient Descent

2.5 . | P60 =3
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Gradient Descent
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Gradient Descent

How can we ‘minimize’ f(x)?
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Gradient Descent

How can we ‘minimize’ f(x)?

4.0

F(x) = -3 L PX) =23

1.0 ] - £(x) = =2 |

f2(x) =2

-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15

2.0

77

0,
boraay



Gradient Descent

How can we ‘minimize’ f(x)?
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Gradient Descent

How can we ‘minimize’ f(x)?
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Gradient Descent

How can we ‘minimize’ f(x)?
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-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15

2.0
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Gradient Descent

How can we ‘minimize’ f(x)?

4.0

F(x) = -3

f°'(x) =3

'F’(x):_2 y/

=15

-1.0 -0.5 0.0 0.5 1.0 15
X

2.0
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Gradient Descent

How can we ‘minimize’ f(x)?

f(x) = x*x

4.0

3.5 1

3.0 1

2.5 1

2.0 1

1.5+

1.0 4

0.5

F(x) = -3

£(x) = -2 |

f°'(x) =3

f(x) =2

0.0
-2.0

N

=15 -1.0 -0.5

0.0 0.5 1.0
X

15

2.0

Move in the direction
OPPOSITE of the derivative

Move the amount
proportional to the derivative
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Gradient Descent




Gradient Descent

Rate of change of loss
w.r.t. the parameter
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Gradient Descent

Rate of change of loss
w.r.t. the parameter
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Learning Rate
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Gradient Descent

Rate of change of loss
Current value of the w.r.t. the parameter
parameter

L ar()

(LT

Learning Rate
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Gradient Descent

Rate of change of loss
Current value of the w.r.t. the parameter
parameter

L ar()
¢ :973_}7 9;

Improved value of the
parameter Learning Rate
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Gradient Descent

= X*X

f(x)

Learning rate = 0.2

-20 -15 -10 -05 0.0 0.5 1.0 15
X

X"W = x - 0.2*%f’(x)
f'(2) =4
XMW = 2 - 0.2%4

xX"eW =1.2
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Gradient Descent

= X*X

f(x)

Learning rate = 0.2

-20 -15 -10 -05 0.0 0.5 1.0 15
X

X"W = x - 0.2*%f’(x)
°(1.2) = 2.4
x"®W' =12 - 0.2*2.4

x"W = 0.72
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Gradient Descent

= X*X

f(x)

Learning rate = 0.2

-20 -15 -10 -05 0.0 0.5 1.0 15
X

X"W = x - 0.2*%f’(x)
£(0.72) = 1.44
x"®W = 0.72 - 0.2*1.44

x"*W = 0.432
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Gradient Descent

= X*X

f(x)

Learning rate = 0.2

-20 -15 -10 -05 0.0 0.5 1.0 15
X

X"W = x - 0.2*%f’(x)
£’(0.432) = 0.864

x"®W = 0.432 -
0.2*0.864

x"W = 0.2592
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Gradient Descent

Learning rate = 0.2

4.0 A

3.5 1T

3.0 17—

2.5 1

X*X

201

f(x)

15 1

1.0 41—

0.5 1

0.0 1

-20 -15 -10 -05 0.0 0.5 1.0 15 2.0
X
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Problems with Gradient Descent

=> Sensitivity to the learning rate
= Doesn’t work with non-differentiable functions

=> Can get stuck in local minima
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Sensitivity to Learning Rate

Learning rate = 0.01 Lear ate > 1
4.0 1 4.0 1
3.5 1T 3.5 1T
3.0 304
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Needs differentiable functions

Image source: https:/www.varsitytutors.com/hotmath/hotmath_help/topics/step-function bl



Can get stuck in local minima

Global minimum
(optimal solution)

local minima

Image source: Elkarashily, Ahmed, et al. "VLSI Placement using Modified Parallel Simulated Annealing." :



Why nonlinear learning?

- We saw iterative learning (gradient descent) is needed when we want to
learn nonlinear functions.

=> But why do we need nonlinear functions? Is linear not enough?
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Example: XOR Problem

5 )2 Q

= = 0O O | P>
_ O, O |
O~ OO

98

Image source: https:/www.build-electronic-circuits.com/xor-gate/



Example: XOR Problem

5 e o B

Al B Q
0|0/ O
0| 1|1
1| 0] 1
1] 110

29

Image source: https:/www.build-electronic-circuits.com/xor-gate/
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Example: XOR Problem

5 e o B

Linear classification

does not work.

A g Q 1 0

0 0 0

0 1 1

1 0 1 ; !

1 1 0 L A

100

Image source: https:/www.build-electronic-circuits.com/xor-gate/



Example: XOR Problem

5 e o B

= = 0O O | P>
_ O, O |
O~ OO

Linear classification
does not work.

101

Image source: https:/www.build-electronic-circuits.com/xor-gate/



Example: XOR Problem

5 e o B

Linear classification
does not work.

A g Q 1 0

0 0 0

0 1 1

1 0 1 ; !

1 1 0 L A
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Image source: https:/www.build-electronic-circuits.com/xor-gate/



How to do nonlinear learning?

=> Can we combine linear boundaries to perform nonlinear learning?
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Example: XOR Problem

5 e o B

Al B Q
0|0/ O
0| 1|1
1| 0] 1
1] 110
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Image source: https:/www.build-electronic-circuits.com/xor-gate/
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Example: XOR Problem

5 20

New variables

C = A AND (NOT B)

D = (NOT A) AND B

Al Bl Q A B c
0 0 0 0 0 0
0 1l 1 . 1 .
K 0 il

1 0 1
i} 1 0

1 1 0

105

Image source: https:/www.build-electronic-circuits.com/xor-gate/



Example: XOR Problem

A|B C D

0/0| 0|0
0(1,0 1

11010
17100

o0 3

podis

Lo I a
e/

106



Example: XOR Problem

Linear classification

B D is now possible.
1 1 o 1 1
0 o 1 0 0 0 1
0 1 A 0 1 C
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Example: XOR Problem

Linear classification
does not work.
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Example: XOR Problem

Linear classification
is now possible.
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Example: XOR Problem

NOT
A

1

(NOT A) AND B

110
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Example: XOR Problem

B
1 1 0
A AND (NOT B)
0 0 1
0 1 A

M




Example: XOR Problem

r (NOT A) AND B
We combined two linear

boundaries to form a more
complicated boundary!!

A AND (NOT B)

112 M|Ia



How to do nonlinear learning?

-> Can we combine linear boundaries to perform nonlinear learning? YES!
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How to do nonlinear learning?

-> Can we combine linear boundaries to perform nonlinear learning? YES!

Recall Logistic regression

Logistic Regression Classification (Petals)

2.75
2.50 ° oo
. .
eeee o 0 o .
y — 2.25 1 .o .
oo o .
1 e (U):L"i'b) E 2.001 ecoe ° o
i e o °
£ 0 e e0 oo o
g1 ° .
= ee o .
g 150 o oeo eoe
= . ® ooe L]
e eecccce
125 000 o
e o Cla:
1.00 oo e oo
® versicol lor
® virginica
0.75

3.0 35 4.0 4.5 5.0 5.5 6.0 6.5 7.0
petal length (cm)
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How to do nonlinear learning?

-> Can we combine linear boundaries to perform nonlinear learning? YES!

Recall Logistic regression

Logistic Regression Classification (Petals)

L e
y _ 1 + e—(w:v+b) EZ’OO' .::‘.ono » . . ..
1.00 < o0 ..::.. °e Classes
We’ll call this a o rginica

3.0 35 4.0 45 5.0 5.5 6.0 6.5 7.0

‘perceptron’ petal length (cm)
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Perceptron

Perceptron

Y

B 1

T 1 4+ e~ (wiz1twaza+b)

16
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Perceptron

1
Perceptron — Y =
1 + e~ (wiz1+wawa+b)

Note: Perceptrons are defined for various
‘activation functions’. We are using ¢(x) for
our example (hence, logistic regression).

17 Ml|a



Perceptron

1

Perceptron — —
Y 1 + e~ (wiz1+waz2+b)

Axon
terminals
Myelin sheath
—
—>
—
» Output
Ir.\pm. Dendrites Signals
Signals  — P
—
—s
—_ Cell nucleus

18

Image source: https://www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron
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Perceptron

1
- Y= 1 + e~ (wiz1+waz2+b)

Perceptron

Perceptrons are also
called ‘Neurons’

Axon
terminals
Myelin sheath
—
—
—
» Output
Ippm Dendrites Signals
Signals  —
—
—s
—_ Cell nucleus

119 Image source: https:/www.simplilearn.com/tutorials/deep-learning-tutorial/perceptron .&M||a




Multi-layer Perceptron

Each perceptron can only create a linear boundary.
But together, they can do so much more!!
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Multi-layer Perceptron

Each perceptron can only create a linear boundary.
But together, they can do so much more!!

—
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Multi-layer Perceptron

Each perceptron can only create a linear boundary.
But together, they can do so much more!!
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Multi-layer Perceptron

Each perceptron can only create a linear boundary.
But together, they can do so much more!!
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Multi-layer Perceptron

Each perceptron can only create a linear boundary.
But together, they can do so much more!!

Multi-layer perceptrons (of infinite width) are universal
approximators!!
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Break
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Training our own MLP

Move to Colab
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https://colab.research.google.com/drive/1bQbPW9cVpqyDEmbGzBCODU2zF5zuhkJa?usp=sharing

