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Background
● Cyber-Physical Systems

● Time Delay Attack

● System and Threat 

Models
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Sensors

H. Farhangi, “The path of the smart grid”, IEEE power and energy magazine, vol. 8, no. 1, pp. 18–28, 2009.
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Time Delay Attack
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A. Sargolzaei, et al., “Time-delay switch attack on load frequency control in smart grid”, Advances in Communication Technology, vol. 5, pp. 55–64, 2013.
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Why TDA?

● No abrupt change in signal traffic

● Does not require breaking the signal encryptions

● Can cause serious damage in closed loop systems

A. Sargolzaei, et al., “Time-delay switch attack on load frequency control in smart grid”, Advances in Communication Technology, vol. 5, pp. 55–64, 2013.



Impact Assessment and Mitigation



System Model

● Closed loop discrete-time CPS control systems (PPCS and AGC)

● Time is divided into slots

● Running simulations to create both training and testing dataset

● System is subjected to disturbances, e.g., measurement noises, 

actuation biases, setpoint changes, etc

X. Lou, et al., “Assessing and mitigating impact of time delay attack : Case study for power grid controls”, IEEE JSAC, vol. 38, no. 1, pp.141–155, 2020.



Threat Model

● Packet is maliciously delayed by τ but not tampered (τ is an 

integer)

● Attack launched with a random delay value (τ) and a random 

delay location

● Assumption : Lack of a trustworthy clock synchronization 

between the controller and the actuator

X. Lou, et al., “Assessing and mitigating impact of time delay attack : Case study for power grid controls”, IEEE JSAC, vol. 38, no. 1, pp.141–155, 2020.



Challenges & 
Motivation

● Model-driven vs 

Data-driven methods

● Real-Time vs 

Post-mortem analysis

● Long Input Streams



Model-driven vs Data-driven methods

● Mathematical modeling creates highly complex models 

which are not robust to real-world noise

● Data-driven methods can learn to extract useful latent 

features that cannot be modelled manually

● Data-driven methods are easier to generalize and does not 

require domain expertise



Real-time vs Post-mortem analysis
Real-time Analysis

● Can help prevent damage

● Input information is a 

continuous data stream

● Can be inaccurate 

initially, but has the 

ability to improve over 

time

Post-mortem Analysis

● Does not have any direct 

practical use

● Complete input trace is 

available.

● Can be fairly accurate as it 

has seen the complete 

input signal



Long continuously running input stream

● Updating the output based on only the new input 

● Processing the complete input signal at every time step can 

be very expensive

● Long input streams can lose information from the past. 

Traditional LSTMs are not suitable for the task



Our Solution
● Hierarchical LSTM

● Multi-head Output

● Asynchronous Training

● Interpretation Strategies

● Evaluation Results
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Specialized Detection and Characterization

HLSTM layers
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Flexible Interpretability (Regression)
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Evaluation Metrics

● MAE and RMSE 

-- To evaluate the characterization head

● Accuracy, False Positive and False Negative 

-- To evaluate the detection head

● T

avg

 

-- To evaluate average characterization latency



Internal Ablation Study (PPCS)

Approach
Classification (Detection) Regression (Characterization)

Accuracy FP FN MAE RMSE Tavg

Vanilla LSTM + Multi-task 85.21% 9.7% 5.1% 4.17 8.76 136

Accumulate LSTM + Multi-task 89.76% 7.1% 3.3% 2.76 6.03 168

HLSTM + Multi-task 92.39% 4.7% 2.9% 2.03 5.48 128

● HLSTM outperforms Accumulate LSTM or Vanilla LSTM, under the same 

multi-task head training and testing setup
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Comparing Against Baseline Models (PPCS)

Approach
Classification (Detection) Regression (Characterization)

Accuracy FP FN MAE RMSE Tavg

kNN 72.6% 11.8% 15.6% 6.23 9.48 300

Random Forest 80.82% 5.2% 13.9% 6.44 10.32 300

(Lou et al, 2019) -- -- -- 3.73 6.84 300

Our Model 92.39% 4.7% 2.9% 2.03 5.48 128

● Deep learning models can reduce the error to almost half, when compared against 

traditional models like kNN and RF

● All existing methods provide post-mortem analysis, but our method can provide 

real-time results, reducing the average reaction latency from 300s to 128s while 

improving the error even further

X. Lou, et al., “Learning-based time delay attack characterization for cyber-physical systems”, IEEE SmartGridComm, AI in Energy Systems (Invited Paper), 2019.



Comparing Against Baseline Models (AGC)

Approach
Classification (Detection) Regression (Characterization)

Accuracy FP FN MAE RMSE Tavg

kNN 71.29% -- 28.7% 3.27 5.02 200

Random Forest 74.57% -- 25.4% 3.41 4.10 200

(Lou et al, 2019) -- -- -- 1.34 2.17 200

Vanilla LSTM + Multi-task 81.07% -- 18.9% 1.74 3.84 63

Accumulate LSTM + Multi-task 97.71% -- 2.3% 0.77 1.42 65

HLSTM + Regression only -- -- -- 1.07 1.84 81

2 HLSTM + Multi-task 99.09% -- 0.9% 0.47 0.91 57

HLSTM + Multi-task 98.49% -- 1.5% 0.49 0.98 49



Interpretation Strategies ( Classification )



Interpretation Strategies ( Regression )



Exploring Model Sensitivity (PPCS)



Exploring Model Sensitivity (PPCS)

PPCS can actually tolerate 

upto 𝛕=12 value delay attack 

with no harm

X. Lou, et al., “Assessing and mitigating impact of time delay attack : Case study for power grid controls”, IEEE JSAC, vol. 38, no. 1, pp.141–155, 2020.



Exploring Model Sensitivity (AGC)



In Conclusion
● Time Delay Attacks are unique cyber attacks that are difficult to detect 

and can cause real harm to the system

● A majority of existing solutions to TDA are dependent on mathematical 

modelling of the system, and perform post-mortem analysis.

● We propose a learning-based solution to detect and characterize TDA

● We propose hierarchical LSTM backbone to deal with longer sequences, 

multi-tasking head specialised to do detection and characterization, and 

various strategies to improve the interpretability of our model.

● We provide significant improvement in accuracy while reducing the 

reaction latency by 3-4 times.



Thank You


