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Abstract

Deep learning models have proven to be highly successful.
Yet, their over-parameterization gives rise to model multiplic-
ity, a phenomenon in which multiple models achieve similar
performance but exhibit distinct underlying behaviours. This
multiplicity presents a significant challenge and necessitates
additional specifications in model selection to prevent unex-
pected failures during deployment. While prior studies have
examined these concerns, they focus on individual metrics in
isolation, making it difficult to obtain a comprehensive view
of multiplicity in trustworthy machine learning. Our work
stands out by offering a one-stop empirical benchmark of
multiplicity across various dimensions of model design and
its impact on a diverse set of trustworthy metrics.

In this work, we establish a consistent language for study-
ing model multiplicity by translating several trustworthy
metrics into accuracy under appropriate interventions. We
also develop a framework, which we call multiplicity sheets,
to benchmark multiplicity in various scenarios. We demon-
strate the advantages of our setup through a case study in
image classification and provide actionable insights into the
impact and trends of different hyperparameters on model
multiplicity. Finally, we show that multiplicity persists in
deep learning models even after enforcing additional specifi-
cations during model selection, highlighting the severity of
over-parameterization. The concerns of under-specification
thus remain, and we seek to promote a more comprehensive
discussion of multiplicity in trustworthy machine learning.

1. Introduction

Deep learning has experienced a remarkable rise in re-
cent years [29, 30, 32], with highly sophisticated and over-
parameterized models leading the way [11, 31]. Conse-
quently, these cutting-edge models find application across
a diverse set of domains, including image processing [39],
natural language [21], healthcare [14], finance [2], judiciary

systems [42], and more, showcasing their versatility and po-
tential impact. However, the increasing deployment of these
models has sparked concerns about their trustworthiness. To
confront these issues head-on, the global community has em-
braced a range of trustworthy machine learning practices and
metrics [19,38]. These efforts are geared towards ensuring
that these models are not only accurate in their predictions,
but are also fair to various groups in the dataset [3,25], robust
to distribution shifts [36], maintain the privacy of the indi-
viduals whose data was collected [13], and secure against
adversarial attacks [7]. These metrics collectively strive to
make deep learning deployments more reliable, fostering
trust and acceptance in its widespread applications.

Alongside the discussion of trustworthy ML, the presence
of multiplicity in deep learning has emerged as a significant
concern yet a welcome opportunity [5, 10]. Model multi-
plicity is the existence of multiple high-performing models
that achieve similar accuracy on a given task but can display
diverse predictive behaviours due to varying decision bound-
aries and underlying learned functions. Model multiplicity is
the result of an under-specified and over-parameterized train-
ing regime, and can be affected by design choices like model
architectures, hyperparameters, training configurations, or
even arbitrary choices like the randomness in training.

Model multiplicity in deep learning has significant im-
plications. For instance, it has been shown that changes in
the training configuration can lead to considerable variations
in the biases present in a model [15,27]. Deploying such
models without considering the impact of multiplicity can
result in the unintentional deployment of unfair models in
real-world applications. Conversely, if we manage multiplic-
ity with appropriate constraints, it presents an opportunity to
deploy fairer models without compromising its utility. Thus,
addressing the challenges of model multiplicity is a crucial
step towards creating trustworthy systems.

Existing literature on investigating model multiplicity is
limited to specialized settings that do not generalize. For
instance, Somepalli et al. [35] provides an empirical quantifi-
cation of similarity in the decision boundary of two models.
However, the similarity of decision boundaries may not nec-



essarily provide any information about its trustworthiness.
Models with significantly different decision boundaries can
still provide similar accuracy, fairness, robustness, security,
and privacy. Similarly, Ganesh et al. [15] investigates the
impact of random seeds on fairness, but their discussion fo-
cuses on model predictions, and thus may not extend to other
trustworthy metrics like robustness, security, or privacy. Fur-
thermore, these investigations are not directly comparable to
each other. For example, a 70% agreement between the de-
cision boundaries of two models as defined by Somepalli ef
al. [35] has no comparative value to a 10% gap in equalized
odds (a fairness metric) between the same set of models [15].
Thus, while these works provide a deeper investigation into
a single metric in isolation, they fail to provide a comprehen-
sive view of the overall trends of multiplicity.

In this paper, we address this gap by proposing a frame-
work to measure multiplicity that can not only dive deeper
into multiplicity trends for a single metric but also provide
comparisons across different metrics. We start by convert-
ing various trustworthy metrics to a common scale, which
we refer to as accuracy under intervention, facilitating the
comparison of multiplicity across different metrics. We then
create multiplicity sheets that capture the multiplicity of ac-
curacy under intervention for each metric separately. To
illustrate our framework, we present an image classification
case study that compares multiplicity across model hyperpa-
rameters, random seeds, and architecture choices, repeating
the setup for various trustworthy ML metrics, namely fair-
ness, robustness, privacy, and security.

We end our discussion by presenting the results of com-
bining various metrics together to improve the model speci-
fication and reduce multiplicity. However, despite following
the recommendations of recent literature and providing ad-
ditional specifications using trustworthy metrics, our study
reveals that model multiplicity can still create unforeseen
failure cases. This highlights the need for future research to
gain a more holistic understanding of model multiplicity.

Setting Expectations and Our Contributions: Before
delving into our contributions, it is essential to first clarify
the scope of our work. Our goal is not to present novel
findings on the multiplicity of any specific metric. In fact,
we will revisit many existing results in the literature during
our case study. Rather, we seek to establish a normative
language to record model multiplicity that can be used to
highlight multiplicity trends across different metrics, thus
providing an overall picture of multiplicity in deep learning.
More specifically, our contributions are:

* We propose a standardized framework to measure and
study model multiplicity in deep learning.

— We introduce a new class of metrics called accuracy
under intervention. We showcase techniques to convert

any metric into accuracy using appropriate interventions,
thus providing a common scale of comparison.

— We suggest using multiplicity sheets, a comprehensive
yet compact method to record and study model multi-
plicity for any target metric.

* We present a case study of model multiplicity in image
classification, by providing an empirical benchmark to
highlight the advantages of our framework.

— We take an all-encompassing view of model multiplicity
and its impact on trustworthy ML by comparing multi-
plicity across fairness, robustness, privacy, and security.

— We study the influence of various axes of model varia-
tions on multiplicity, including model architecture, train-
ing randomness, and hyperparameter choices.

* We combine several trustworthy metric specifications to
challenge over-parameterization and assess its impact on
multiplicity. Despite this, we see persistent multiplicity on
trustworthy issues not seen during model selection, under-
scoring the need for better safeguards against multiplicity
when deploying models in the real world.

2. Measuring Multiplicity

We will start by discussing our framework to study mul-
tiplicity. We introduce the concept of accuracy under in-
tervention to translate any metric into an accuracy metric,
followed by our proposal to use multiplicity sheets to record
and compare the said accuracy under intervention.

2.1. Accuracy Under Intervention

We want to establish a standardized way to measure
model multiplicity that would allow easy comparison across
different scenarios. However, measuring multiplicity for
various trustworthy objectives relies on vastly different met-
rics, making it a complex task. For instance, comparing
accuracy multiplicity (difference in accuracy) with security
multiplicity (difference in minimum adversarial distance to
flip the label), is not straightforward. These two metrics are
not comparable since they are based on different factors, one
on performance and the other on distance.

We need a method that can translate these metrics to a
common scale for a fair comparison. To achieve this, we
propose converting each metric into accuracy through appro-
priate interventions. Simply put, we want to measure model
accuracy under a well-designed intervention that represents a
proxy for our original trustworthy metric. For instance, when
testing the security of a model against adversarial attacks,
instead of measuring the minimum adversarial distance to
flip the label, we can measure the model accuracy under a
fixed adversarial distance budget. Once a metric is translated
to accuracy under such an intervention, we can now compare
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Figure 1. Multiplicity sheet for Accuracy on UTKFace dataset. R18/50: ResNet-18/50; WR50: WideResNet-50x2. This multiplicity sheet
records accuracy scores across different hyperparameter choices and random seeds, representing the first level of readability without any loss
of information. It then aggregates multiplicity by measuring A, 4, across random seeds for each hyperparameter and across hyperparameter
choices for each random seed. This is the second level of readability, vital for extracting multiplicity trends. For instance, by studying the
Amaz values, we see the equal importance of both random seeds and hyperparameter choices on accuracy multiplicity. Finally, we aggregate
the overall multiplicity A%, i.e., the third level of readability, condensing accuracy multiplicity for UTKFace into a single value.

them directly to each other and get a comprehensive under-
standing of the multiplicity. More details on the specific
interventions for each metric are present in Section 3.

2.2. Multiplicity Sheets

After converting every metric to accuracy under inter-
vention, we propose a method for recording these values
to facilitate easy comparison and visualization. We want
a method that can provide both summaries for a quicker
scan and detailed results for a more in-depth analysis. To
achieve this, we create multiplicity sheets, a straightforward
and highly intuitive approach to documenting multiplicity.

A multiplicity sheet is a collection of tables, where each
table compares two axes of multiplicity. The information in
our multiplicity sheets has three levels of readability. The
first level shows the raw metric scores, in this case, accuracy
under intervention, ensuring no loss of information. The sec-
ond level aggregates multiplicity across each axis in every
table by taking the maximum difference in scores denoted by
A naz. This allows easy visualization of various trends and
the influence of different hyperparameters on model multi-
plicity. Finally, the third level further aggregates the com-
plete multiplicity sheet by taking the maximum difference
across all raw metric scores to get a single value representing
the overall multiplicity of the given metric, denoted as A%
Given that we use accuracy under intervention for all metrics,
AUl serves as a useful measure to compare multiplicity
across different metrics, i.e., different multiplicity sheets.

An example of a multiplicity sheet can be seen in Fig. 1,

where we record the accuracy multiplicity on the UTKFace
dataset under various training configurations (more details in
Section 3). Throughout our paper, we will designate one axis
of multiplicity in each table to be the random seeds. This is
to filter chance trends when comparing different hyperparam-
eters by balancing them against multiple runs with changing
random seeds. It should be noted that multiplicity sheets can
be created for any metric, not just accuracy under interven-
tion. However, using accuracy under intervention allows us
to compare the multiplicity trends across different sheets,
which wouldn’t be possible with just any metric. We will
now move to our case study to highlight the benefits of our
framework, while also providing an empirical benchmark
of multiplicity in image classification that can be directly
useful for researchers and practitioners.

3. Image Classification on UTKFace

To demonstrate the utility of our framework, we will
perform a case study of the model multiplicity in image
classification on the UTKFace dataset. We first outline our
experimental setup, followed by a comprehensive discussion
of multiplicity in fairness, robustness, privacy, and secu-
rity. To provide diversity in experiments, we also perform a
separate case study on the CIFAR10 dataset in Appendix A.

3.1. Experiment Setup

Dataset We will be studying the UTKFace dataset, con-
taining facial images that have been labelled according to
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Figure 2. Multiplicity sheet for Group Accuracy (Asian) on UTKFace dataset. R18/50: ResNet-18/50; WR50: WideResNet-50x2. Among
various hyperparameter choices, the batch size and architecture stand out in their influence on fairness multiplicity. However, it is the
variance across changing random seeds that overshadows all other sources of multiplicity, making it the most important factor for fairness

l

during model selection. The overall fairness multiplicity (A2, ) is also almost 3 times higher than the accuracy multiplicity seen earlier.
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Figure 3. Distribution of fairness multiplicity (i.e., group accuracy) across different intersections of racial and age groups in the UTKFace
dataset. Each distribution is a condensed representation of a multiplicity sheet, containing the group accuracy of 65 independently trained
models across all axes of multiplicity described in Section A.1. Different groups have varying ranges of multiplicity, with a specially
amplified variance from intersectional groups, highlighting the concerns and opportunities of multiplicity in fairness. Note: The minor
perturbations along the x-axis for any group are only present for enhanced visualization and do not convey any additional signal.

their perceived gender, race, and age. We will focus on the
binary classification task of perceived gender. We split the
dataset into 80% training and 20% testing, and we maintain
the same split throughout our paper, i.e., we do not consider
potential multiplicity introduced by the train-test splits.

Training Details By default, we train our models using
a learning rate of 0.1, a batch size of 128, the data aug-
mentation RandAugment [9], the SGD optimizer, and the
ResNet-18 architecture [16]. For a simpler analysis, all
models are trained from scratch, i.e., without the use of pre-
trained weights. We use a single random seed to control all
forms of randomness in model training. We leave the decou-
pled analysis of various sources of randomness for future
work. Finally, all models are trained with cross-entropy (CE)
loss for 50 epochs, without any early stopping.

Axes of Multiplicity We will investigate the follow-
ing different axes of multiplicity, (i) Learning Rate:
{0.1,0.05,0.01}, (ii) Batch Size: {128,256,640}, (iii)
Data Augmentation: RandAugment [9] and TrivialAug-
ment [26], (iv) Optimizer: SGD and Adam, (v) Model Archi-
tecture: ResNet-18 [16], ResNet-50 [16], and WideResNet-
50x2 [43]. We also compare multiplicity across changing
randomness in model training.

3.2. Group Fairness

Group fairness is a measure of performance disparity
between different protected groups, rooted in concerns of
algorithmic bias propagated from the dataset to the model
[1,4,8,44]. Traditionally, group fairness is measured as the
difference in performance between different groups in the
dataset. For accuracy under intervention in our setup, we
calculate the accuracy on the minority group (which can also
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Figure 4. Multiplicity sheet for OOD Accuracy (FairFace) on UTKFace dataset. R18/50: ResNet-18/50; WR50: WideResNet-50x2. The
learning rate and batch size both seem to noticeably influence the OOD robustness, while it’s the architecture choice that dominates any

other factor for robustness multiplicity. The overall multiplicity (A2L,,) is slightly higher than the fairness multiplicity seen previously.

be extended to other groups). More specifically, we consider 3.3. Out-of-Distribution Robustness
racial labels for fairness and measure the accuracy of the

racial minority in the UTKFace dataset, i.c., Asians. Out-of-distribution (OOD) robustness refers to the ability

of a machine learning model to perform well on data points
that are different from those it was trained on. Models that
lack OOD robustness might make unreliable or incorrect pre-
dictions when faced with new, unfamiliar data, potentially
leading to undesirable outcomes after deployment. Tradi-
tionally, OOD robustness is measured as the model’s perfor-
mance on an OOD dataset. Since it is already an accuracy
metric, we do not perform any additional intervention for
robustness. More specifically, we simply use the model’s
accuracy on the FairFace dataset [ 18], a facial image dataset
with a different distribution than UTKFace, as the measure
of OOD robustness multiplicity.

In Fig. 4, we present the multiplicity sheet for Accuracy
on the FairFace dataset. We see the impact of learning rate,
batch size, and architecture on robustness emerge from the
multiplicity sheets, an unsurprising result based on existing
work on the benefits of smaller batch size, larger learning
rate, and higher risks of overfitting in bigger models [17,

24]. The range of overall robustness multiplicity (A% =

max
3.51) is of the same range as fairness multiplicity, i.e. three
times higher than accuracy multiplicity. Thus, addressing
multiplicity in OOD robustness is essential to making sure

the model doesn’t fail even under minor distribution shifts.

In Fig. 2, we present the multiplicity sheet for Group Ac-
curacy (Asian). We use the sheet to highlight the importance
of random seeds in fairness and also contrast it to the multi-
plicity sheet for Accuracy in Fig. 1. As can be seen clearly
from the A, values of changing random seeds compared
to different hyperparameter choices, random seeds have the
most significant impact on fairness multiplicity. Moreover,
we can also observe that the overall fairness multiplicity
(A% — 3.24) is three times higher than the accuracy mul-

max

tiplicity (A% = 1.12). These trends of fairness variance
and the impact of random seed have been previously noted
in literature [15, 34], however here we show the ease with

which they can be spotted in our multiplicity sheets.

We repeat the experiment for various groups and plot the
distribution of fairness multiplicity across all axes of mul-
tiplicity, in Fig. 3, with groups formed at the intersection
of two different protected attributes, i.e., race and age. Our
findings reveal that the severity of fairness multiplicity is
even higher for intersectional groups. To put this into per-
spective, consider selecting a model from the distribution
of models in Fig. 3. While the choice may only affect the
overall accuracy in the range of 92.05% to 93.17%, it can

. N 4. Differential Pri
significantly alter the accuracy for older Asian individuals, 3 itferential Privacy

ranging from 88.46% to 98.08%. To sum up, our analysis Deep learning models tend to memorize data points from
clearly shows the alarmingly high fairness variance, and their training dataset, compromising the privacy of the indi-
the need to address this multiplicity such that deep learning viduals in the dataset. For instance, an adversary with access

models treat diverse groups fairly during deployment. to only the outputs of the model is capable of extracting
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Figure 5. Multiplicity sheet for Perturbation Accuracy (A = 5) on UTKFace dataset. R18/50: ResNet-18/50; WR50: WideResNet-50x2.
The random seed has very little influence on the perturbation accuracy, while the default hyperparameter choices are noticably dominant
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over other hyperparameters, with the biggest drop caused by using a large batch size. The overall multiplicity (A%, ) is also quite high, five
times larger than accuracy multiplicity, but clearly dependent on the choice of the rate parameter .

sensitive information from the model [6, 33]. To address this
issue, researchers often study differential privacy [12], which
aims to make models trained on datasets differing at exactly
one data point indistinguishable. One way to achieve this
is by adding noise to the model’s outputs. However, adding
noise can also hurt the model’s performance, thus creating
a trade-off between privacy and accuracy. It is this very
trade-off that we will exploit to define our accuracy under
intervention, i.e., we will measure the accuracy of the model
under output perturbations from an exponential distribution
with a fixed rate parameter \, for privacy multiplicity.

it comes to the privacy-accuracy trade-off, in line with the
existing literature on practical tips for privacy [28]. Addition-
ally, the overall privacy multiplicity range (A% = 5.30) is
almost five times larger than the accuracy multiplicity. These
results are clearly dependent on the rate parameter A used to
calculate accuracy under intervention and to emphasize this,
we plot the distribution of privacy multiplicity for different
rate parameter values in Fig. 6. It is evident that choosing the
right model by accounting for privacy multiplicity is crucial
to achieving better privacy-utility trade-offs during inference,
and this choice becomes even more critical with a decrease
in privacy budget (i.e., higher values of rate parameter \).
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Figure 6. Distribution of privacy multiplicity (i.e., perturbation
accuracy) across different values of the rate parameter A. The higher
the rate parameter, the larger the output perturbations, which in turn
creates larger drops in accuracy and a larger range of multiplicity.
Refer to Fig. 3 for further details on distribution visualization.

We present the multiplicity sheet for privacy by recording
the Perturbation Accuracy with A = 5 in Fig. 5. Interest-
ingly, unlike other trustworthy metrics, the random seed has
minimal impact on the privacy multiplicity. Instead, one hy-
perparameter choice along each axis is clearly the best when

studied in literature is the perturbation-based attack [37],
which takes advantage of the brittle decision boundaries
of deep learning models. In this attack, the objective of
the adversary is to perturb the input image by a minimum
amount that can incite adversarial outputs, while keeping
the perturbation imperceptible to the human eye. Instead of
measuring the minimum distance of the perturbed image to
the original image (measured as L), we will measure the
accuracy under the intervention of a fixed distance budget
represented by 6. Specifically, we use projected gradient
descent (PGD) [23] to progressively move out of the local
minima until we reach the given distance budget, and then
measure the accuracy of the model under these perturbations.
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Figure 7. Multiplicity sheet for PGD Accuracy (§ = 0.005) on UTKFace dataset. R18/50: ResNet-18/50; WR50: WideResNet-50x2. The
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architecture choice stands out as the most influential factor in security multiplicity. The overall multiplicity (A Yy is five times larger than
the accuracy multiplicity, dependent on the choice of the adversarial distance budget d.

We present the multiplicity sheet for PGD Accuracy with
0 = 0.005 in Fig. 7. The trends for security multiplicity
are similar to the accuracy multiplicity trends we observed
previously, i.e., no single factor dominates the multiplicity,
except for architecture choice. Surprisingly, the larger model
ResNet-50 had a negative impact on security multiplicity,
while the even larger but wider model WideResNet-50x2
improved it, which contradicts previous findings in litera-
ture [41] and raises interesting questions for future research.
Similar to privacy multiplicity, the overall multiplicity range
(A%l = 5.53) for security is almost five times larger than
the accuracy multiplicity and depends on the adversarial
distance budget 6. We plot the distribution of security mul-
tiplicity for different adversarial distance budget values in
Fig. 8. Our results have shown that a model’s robustness
to adversarial attacks suffers from severe multiplicity, and
needs to be addressed to provide robust models.
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Figure 8. Distribution of security multiplicity (i.e., accuracy after
PGD) across different adversarial distance budget values §. A
higher budget corresponds to a more powerful adversary, which
in turn results in lower accuracy and higher security multiplicity.
Refer to Fig. 3 for further details on distribution visualization.

4. Model Selection

In our case study, we found significant multiplicity in
various trustworthy metrics that can hurt model deployment,
if left unchecked. To address this multiplicity, the literature
suggests providing appropriate specifications during model
selection [5]. This involves imposing additional constraints
based on some chosen metrics, in our case the trustworthy
metrics. For example, one can measure the fairness scores of
the model under different hyperparameters and only choose
the configurations with bias scores less than some threshold.
This ensures that unfair models are not selected.

These recommendations stem from the belief that imple-
menting extra measures during the selection of a model will
decrease its variability, ensuring predictable behaviour upon
deployment. However, as we will demonstrate in this section,
over-parameterized models can still encounter unforeseen
failure cases during deployment, which are not simply solved
with appropriate specifications during model selection.

Model Specifications:  We first define the following cri-
teria to simulate model selection. We choose models that
rank in the top k% of every metric under varying training
configurations. We assess fairness by measuring accuracy
for the Asian racial group, robustness by evaluating test per-
formance on FairFace, privacy by measuring accuracy under
output perturbations with a rate parameter A = 5, and se-
curity by measuring accuracy under PGD attacks with an
adversarial distance budget of 6 = 0.005. Our approach en-
sures that we only select models that meet the high standards
for all four metrics mentioned above.
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Figure 9. Distribution of multiplicity across unforeseen metrics under various degrees of model selection. The range of multiplicity across
unforeseen metrics might remain unchanged even after we provide additional specifications for known trustworthy metrics, highlighting the
severity of over-parameterization and the need to address multiplicity beyond just a checklist of metrics.

Unforeseen Circumstances:  We now introduce a new set
of metrics to account for situations that were not previously
considered in our specifications. To simplify the discussion,
we will just make minor adjustments to the model speci-
fications and create these "unforeseen circumstances’. To
test fairness, we will measure group accuracy for the age
group 59 — 116 instead of the Asian racial group. To test
robustness, we will evaluate the performance on the CelebA
dataset [22] instead of FairFace. To test privacy, we will
measure accuracy under input perturbations (with a rate pa-
rameter of A = 1) instead of output perturbations. Finally,
to test security, we will increase the distance budget from
0 = 0.005 to 6 = 0.01, thus creating a stronger adversary.
In Fig. 9, we plot the distribution of multiplicity for all
four unforeseen metrics before any model selection, and
then after model selection for k% = 75% and k% = 50%
respectively. We see a noticeable drop in unforeseen fairness
and security multiplicities while maintaining decent fairness
and security accuracy scores under intervention. However,
we do not see this improvement in unforeseen robustness
or privacy multiplicity. That is, despite the highly rigorous
model selection on four different trustworthy ML metrics,
the overall range of multiplicity in these two unforeseen
metrics remains the same, and thus they will face the same
issues during deployment. Clearly, incorporating additional
specifications while selecting models can only provide lim-
ited assistance, leaving a substantial level of multiplicity that
cannot be managed in the same way. Thus, addressing multi-
plicity with a checklist of trustworthy requirements is still
likely to create models that face the same risks of failure in
unforeseen circumstances, emphasizing the need for a more
fundamental investigation into model multiplicity.

5. Related Work

Model multiplicity has been an active subject of research
in the deep learning literature, despite not being in the spot-
light. Much of the related work in multiplicity is indirect,
often disguised as research on the impact of hyperparameter
choices or randomness on trustworthy ML [15,17,24,28,34].

Very few works in literature have focused solely on mul-

tiplicity. Black ez al. [5] provides a discussion on the oppor-
tunities and concerns of multiplicity within the context of
machine learning. However, their work is highly qualitative
and does not provide any framework to quantify and mea-
sure multiplicity. On the other hand, D’ Amour et al. [10]
offer a more quantitative perspective to underspecification in
machine learning. Nevertheless, their analysis is fragmented
across different case studies and does not provide a common
language on multiplicity measurement that can be adapted
for future works on model multiplicity.

6. Conclusion and Future Work

In this paper, we contribute to the discussion of model
multiplicity, specifically in the context of image classifica-
tion. By establishing a consistent and comprehensive lan-
guage for multiplicity, we have created a foundation for
more effective communication in the field. Our multiplicity
sheets offer an intuitive and structured approach to capturing
the various facets of multiplicity. Furthermore, through a
detailed case study, we demonstrated the practical implemen-
tation of our framework, shedding light on the complexities
that arise when dealing with model multiplicity. The insights
derived from the case study not only showcased the utility
of our approach but also unveiled intriguing trends within
the multiplicity scores. Finally, we show empirically that the
challenge of model multiplicity cannot be simply resolved
by providing additional specifications or constraints.

While we emphasize a specific structure for multiplicity
sheets in this paper, it is important to acknowledge that fur-
ther research is required to develop more effective methods
for recording multiplicity. Moreover, our recommendation
to use accuracy under intervention is primarily applicable
to classification tasks. Nevertheless, the challenge of model
multiplicity is a major issue in deep learning that goes be-
yond classification alone. Consequently, it is imperative that
the community engages in further discussion on the topic of
model multiplicity. We must shift away from treating multi-
plicity as an auxiliary discussion and bring it to the forefront
to address potential unforeseen failures in real-world deploy-
ment scenarios and create truly trustworthy systems.
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A. Image Classification on CIFAR10-Skewed

The UTKFace dataset is an excellent choice for our main
paper as it contains valuable metadata and has been exten-
sively studied in trustworthy ML literature. However, it does
come with certain limitations, such as its focus on binary
classification tasks, and being confined to a highly special-
ized domain, i.e., facial images. To address these limitations,
we will conduct a second case study using a skewed version
of the CIFAR-10 dataset (more details below).

A.1. Experiment Setup

Dataset We will adopt the CIFAR10-Skewed setup from
Wang et al. [40] for our case study. In this setup, the 10
object classes of CIFAR10 [20] are divided into two groups,
i.e., colour majority and grayscale majority. The first 5
classes (airplane, automobile, bird, cat, deer) are marked as
the colour majority, i.e., 95% of images from these classes
are left as is, while the other 5% are converted into grayscale
images. Conversely, the last 5 classes (dog, frog, horse,
ship, truck). are marked as the grayscale majority, i.e., 95%
of images from these classes are converted into grayscale
images, while the other 5% are left as is.

Training Details The training details are the same as the
UTKFace Setup, except that we train the models for only 20
epochs on CIFAR10-Skewed.

Axes of Multiplicity The axes of multiplicity are the same
as the UTKFace Setup, except for the model architecture.
We will only use a modified ResNet18 model (adapted for
CIFAR10 images of size 32x32) and we will not study mul-
tiplicity across changing architecture in this case study.

A.2. Accuracy

The multiplicity sheet for accuracy on the CIFAR10-
Skewed dataset is created in Fig. 10. Note that the test
dataset for CIFAR10-Skewed, i.e., the dataset on which we
measure this accuracy, is also skewed and has the same for-
mulation as the training dataset defined above. The trends of
accuracy multiplicity are quite similar to that of UTKFace,
i.e., no significant accuracy variance is present across any
hyperparameter choice or random seeds.

A.3. Group Fairness

For the CIFAR10-Skewed dataset, grayscale images in
the *colour majority’ object classes and colour images in the
’grayscale majority’ object classes are both minority groups.
For this particular case study, we will measure the group
accuracy of the GS Minority, i.e., the grayscale minority in
the colour majority object classes, as the fairness score under
intervention. The results are collected in Fig. 11.

As previously noted, the multiplicity sheet in Fig. 11 high-
lights the importance of random seeds in fairness. While
other hyperparameter choices do have a noticeable impact (in
order - training data augmentation, batch size, learning rate,
and the optimization algorithm), clearly the most consistently
dominant source of fairness multiplicity is the randomness
in model training. Moreover, the overall fairness multiplic-
ity (A% = 11.16) is almost seven times higher than the

max

accuracy multiplicity (A% = 1.63), further highlighting

max
the severe impact of multiplicity on trustworthy metrics.

A.4. Out-of-Distribution Robustness

We will use accuracy on a grayscale version of the CI-
FAR10 dataset [20] as the measure of our OOD robustness
multiplicity. In Fig. 12, we present the multiplicity sheet for
Accuracy on the CIFAR10-GS dataset. The results show sim-
ilar trends to robustness multiplicity for UTKFace, with both
hyperparameter choices and the random seed being equally
important in affecting the model’s robustness. The range
of overall robustness multiplicity (A% = 4.01) is a little
more than two times higher than accuracy multiplicity, which
is unsurprising since despite being grayscale, the test images
still belong to CIFAR10. A more severe robustness check
on a dataset that is quite different from CIFAR10 might
introduce and even higher OOD robustness multiplicity.

A.5. Differential Privacy

We use the same perturbation and trade-off setup for pri-
vacy multiplicity as done for UTKFace, i.e., we will measure
the accuracy of the model under output perturbations from
an exponential distribution with a fixed rate parameter \.
We present the multiplicity sheet for privacy by recording
the Perturbation Accuracy with A = 5 in Fig. 13. The same
trends as Fig. 5 are noticed, i.e., the random seed has min-
imal impact and it’s the hyperparameters that dramatically
influence the privacy multiplicity, in line with the existing
literature on practical tips for privacy [28]. The overall pri-
vacy multiplicity range (A%L = 10.28) is also almost six
times larger than the accuracy multiplicity but would depend
on the rate parameter \.

A.6. Security against Adversarial Attacks

We will use the same setup for security multiplicity as
UTKFace, i.e., we use projected gradient descent (PGD) [23]
to progressively move out of the local minima until we reach
the given distance budget, and then measure the accuracy
of the model under these perturbations. We present the
multiplicity sheet for PGD Accuracy with § = 0.005 in Fig.
14. The trends are again similar to the ones seen in the main
paper, i.e., no single factor dominates the multiplicity. The
overall multiplicity range (A%! == 4.51) for security is
almost five times larger than the accuracy multiplicity and
clearly depends on the adversarial distance budget J.
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A.7. Discussion

We have provided an additional case study on the
CIFAR10-Skewed dataset as a companion to our main case
study on the UTKFace dataset. These results help us cement
certain trends, for example, the impact of random seeds on
fairness, the impact of hyperparameter choices on privacy-
utility trade-off, etc., all of which are unsurprising as these
trends have been noted previously in the literature (albeit in
isolated settings). We believe these experiments will serve as
a useful companion to our main paper, and help establish the
importance of multiplicity sheets in image classification.
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