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The impact of changing batch size is a lot more severe on fairness, a little 
less on OOD robustness, and not that severe on adversarial robustness 
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Model Selection to Counter Multiplicity: Unseen Metrics

● To ‘simulate’ unseen failure cases

○ Accuracy for age group ‘59-116’

○ Accuracy on OOD dataset ‘CelebA’

○ Accuracy under Input Perturbations for Privacy

○ Accuracy under PGD Adversarial Attacks δ=0.01
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Summary

● We created an empirical language to talk about multiplicity (accuracy under intervention 

and multiplicity sheets)

● We performed a detailed case study and benchmarked model multiplicity of various 

trustworthy ML metrics for image classification. 

● We showed empirically that the concerns of model multiplicity persist even beyond 

model selection.


