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Goals today…

- What is NLP? Why NLP? 
- Basics of Language Modeling
- Language as Numbers: Word Representations
- RNNs and LSTMs
- Attention, Self-Attention and Transformers

- Some Bonus Topics*
*if we get time



Natural Language 
Processing: An 
Interdisciplinary Field
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What is Natural Language Processing?
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What is Natural Language Processing?

It enables computers to understand, interpret and 
respond to human language.
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What is Natural Language Processing?

It enables computers to understand, interpret and 
respond to human language.

- Computer Science, Artificial intelligence, 
Machine learning
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What is Natural Language Processing?

It enables computers to understand, interpret and 
respond to human language.

- Linguistics, Social Science
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Why ‘natural language’? What other kind 
of language is there?
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Why ‘natural language’? What other kind 
of language is there?

Natural Language

Source: https://www.thoughtco.com/ambiguity-language-1692388
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Why ‘natural language’? What other kind 
of language is there?

Natural Language Computer Language

Source: https://www.thoughtco.com/ambiguity-language-1692388
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Why ‘natural language’? What other kind 
of language is there?

• Used for everyday 
communication between 
people

Natural Language

• Used for instructing 
computers to perform 
specific tasks

Computer Language
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Why ‘natural language’? What other kind 
of language is there?

• Used for everyday 
communication between 
people

• Developed naturally
• Complex and ambiguous

Natural Language
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computers to perform 
specific tasks

• Systematically designed
• Precise and unambiguous
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Why ‘natural language’? What other kind 
of language is there?

• Used for everyday 
communication between 
people

• Developed naturally
• Complex and ambiguous
• Highly nuanced and 

flexible

Natural Language

• Used for instructing 
computers to perform 
specific tasks

• Systematically designed
• Precise and unambiguous
• Limited in functionality 

and expressiveness

Computer Language
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Challenges of NLP: Phrasing Ambiguity

Source: https://blueskiesconsulting.com/how-well-do-you-handle-ambiguity-on-a-project/
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Challenges of NLP: Words with Multiple 
Meanings
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Challenges of NLP: Mispellings
Misspellings
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Challenges of NLP: New Vocabulary
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Challenges of NLP: Specialized 
Terminology
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Challenges of NLP: Tone of Voice
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Challenges of NLP: Understanding 
Context

It’s raining cats and 
dogs!

Source: 
https://medium.com/@InsightfulScribbler/the-curious-history-of-raining-cats-and-dogs-and

-interesting-rainy-weather-idioms-from-other-33709f6b7884



22

Challenges of NLP: Code Switching

Source: https://www.theinformedslp.com/review/a-little-bit-of-this-un-poquito-of-that



Language Modeling
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Masked Language Modeling
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Causal Language Modeling

Predicting the next word based on previous words.



Word Representations 
and Embeddings
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Why Word Representations?
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Blood pressure = w*Dosage + b ⇒ 134 = 0.7*20 + 120
Makes sense

Why Word Representations?



29

Blood pressure = w*Dosage + b ⇒ 134 = 0.7*20 + 120
Makes sense

Makes sense

Why Word Representations?



30

Blood pressure = w*Dosage + b ⇒ 134 = 0.7*20 + 120
Makes sense

Makes sense

The cat sat on the mat ⇒ The*0.7 + cat*1.3 + …
????

Why Word Representations?
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Blood pressure = w*Dosage + b ⇒ 134 = 0.7*20 + 120
Makes sense

Makes sense

The cat sat on the mat ⇒ The*0.7 + cat*1.3 + …
????

We need a way to numerically 
represent language

Why Word Representations?
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Representation as Sequential Numbering

The cat sat on the mat
1     2    3    4   1    5

Will this work?
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Representation as Sequential Numbering

The cat sat on the mat
1     2    3    4   1    5

Will this work?

Are the words ‘the’ and ‘cat’ similar? 2-1 = 1. Yes
Are the words ‘the’ and ‘mat’ similar? 5-1 = 4. No

We have encoded wrong similarity information into 
these embeddings without even wanting to!
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Representation as One Hot Encoding

Is this better?



35

Representation as One Hot Encoding

Is this better?

Better. Distance or ‘similarity’ between any 2 feature vectors is now the same! 
But we’re not done yet.

This representation does not have the problems of sequential numbering but it 
also holds no similarity information about the relationship between words.
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Distributed Representation

Numerical representation with correct comparative value!
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Distributed Representation

Numerical representation with correct comparative value!

One hot encoding Distributed Representation
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Embedding Matrix

embedding 
matrix
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Embedding Matrix

the 1 0 0 0 0

cat 0 1 0 0 0

sat 0 0 1 0 0

on 0 0 0 1 0

the 1 0 0 0 0

mat 0 0 0 0 1

One hot encoding
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Embedding Matrix

the 1 0 0 0 0

cat 0 1 0 0 0

sat 0 0 1 0 0

on 0 0 0 1 0

the 1 0 0 0 0

mat 0 0 0 0 1

0.3 0.7 0.9

0.2 0.8 1.1

0.4 0.5 0.5

0.4 0.3 1.2

0.7 0.8 0.9

Embedding Size = 3

One hot encoding Embedding Matrix 
(Learnable)
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Embedding Matrix
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Embedding Matrix

the 1 0 0 0 0

cat 0 1 0 0 0
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Embedding Matrix

the 1 0 0 0 0
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(Embeddings)
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Embedding Matrix
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One hot encoding Embedding Matrix 
(Learnable)

Distributed 
Representation 
(Embeddings)
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Embedding Matrix

the 1 0 0 0 0

cat 0 1 0 0 0

sat 0 0 1 0 0

on 0 0 0 1 0

the 1 0 0 0 0

mat 0 0 0 0 1

the 0.3 0.7 0.9

cat 0.2 0.8 1.1

sat 0.4 0.5 0.5

on 0.4 0.3 1.2

mat 0.7 0.8 0.9

Embedding Size = 3
the 0.3 0.7 0.9

cat 0.2 0.8 1.1

sat 0.4 0.5 0.5

on 0.4 0.3 1.2

the 0.3 0.7 0.9

mat 0.7 0.8 0.9

One hot encoding Embedding Matrix 
(Learnable)

Distributed 
Representation 
(Embeddings)

The embedding matrix is simply a representation of 
different words in the distributed representation space!
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Word2Vec
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Word2Vec

Source: https://jalammar.github.io/illustrated-word2vec/ 

https://jalammar.github.io/illustrated-word2vec/
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Word2Vec

Source: https://jalammar.github.io/illustrated-word2vec/ 

https://jalammar.github.io/illustrated-word2vec/
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Word2Vec

Source: https://jalammar.github.io/illustrated-word2vec/ 

https://jalammar.github.io/illustrated-word2vec/


Deep Learning in NLP: 
RNNs

60
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Why deep learning?
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Why deep learning?

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.
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Why deep learning?

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.

Learn to extract features instead 
of manually creating features
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Why deep learning?

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.

Data-driven learning
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Why deep learning?

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.

End-to-end learning
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Why deep learning?

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.

Scalable with growing 
data and parameters

High Performance!
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Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

Source: Landolt, Severin, Thiemo Wambsganss, and Matthias Söllner. "A taxonomy for deep learning in natural language processing." HICSS. 2021.

Embeddings: Converting 
input text into numerical 
encodings

Outputs and Loss 
Functions: Modeling the 
Final Objective

Neural Networks: What 
neural networks do we 
know about?
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Recurrent Neural Networks (RNNs)

Multi-Layer Perceptrons

Convolutional Neural Networks
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Recurrent Neural Networks (RNNs)

Multi-Layer Perceptrons

Convolutional Neural Networks

Can only handle inputs 

of fixed size

Typically, can only handle 

inputs of fixed size
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Recurrent Neural Networks (RNNs)

Multi-Layer Perceptrons

Convolutional Neural Networks

Can only handle inputs 

of fixed size

Typically, can only handle 

inputs of fixed size
Doesn’t capture the inherent sequential nature of language, or long-term dependencies
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Recurrent Neural Networks (RNNs)

The movie was good .
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive
Captures the inherent 

sequential nature of language
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Recurrent Neural Networks (RNNs)

The movie was not good

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Negative

Can handle variable 
length inputs

.

RNN 
Cell
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Inputs (xi)
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Hidden states (hi)
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Outputs (oi)
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Recurrent Neural Networks (RNNs)

RNN Cell

xi Current input
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1

Current input

Hidden state from 
the previous cell
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1

Current input

Hidden state from 
the previous cell

U

V
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

Hidden state from 
the previous cell

U

V
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

U

V
hi

hi = 𝝈(Uxi + Vhi-1 + bh)

Hidden state from 
the previous cell
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

Hidden state from 
the previous cell

U

V
hi hi

Hidden state to 
the next cell

hi = 𝝈(Uxi + Vhi-1 + bh)
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

Hidden state from 
the previous cell

U

V
hi hi

Hidden state to 
the next cell

oiActivation (𝝈) Output

hi = 𝝈(Uxi + Vhi-1 + bh)
oi = 𝝈(Whi + bo)

W



Example: RNN for 
Sentiment 
Classification

91
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RNN for Text Classification

Objective: Given a sentence s, predict whether it 
contains positive or negative sentiments.
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RNN for Text Classification

Objective: Given a sentence s, predict whether it 
contains positive or negative sentiments.

Eg: That movie was awful. → Negative
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RNN for Text Classification

Step 1: Collect Data

Sentence Prediction

This movie is great. Positive

That movie was good. Positive

This movie is awful. Negative

That movie was bad. Negative
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RNN for Text Classification

Step 2: Tokenize Data

Sentence Tokens

This movie is great. “This” “movie” “is” “great” “.”

That movie was good. “That” “movie” “was” “good” “.”

This movie is awful. “This” “movie” “is” “awful” “.”

That movie was bad. “That” “movie” “was” “bad” “.”
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RNN for Text Classification

Step 3: Create a Vocabulary

Sentence Tokens

This movie is great. “This” “movie” “is” “great” “.”

That movie was good. “That” “movie” “was” “good” “.”

This movie is awful. “This” “movie” “is” “awful” “.”

That movie was bad. “That” “movie” “was” “bad” “.”

Vocabulary “This” “That” “movie” “is” “was” “great” “good” “awful” 
“bad” “.”
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RNN for Text Classification

Step 4: Encode Sentences

This That movie is was great good awful bad .

This 1 0 0 0 0 0 0 0 0 0

movie 0 0 1 0 0 0 0 0 0 0

is 0 0 0 1 0 0 0 0 0 0

great 0 0 0 0 0 1 0 0 0 0

. 0 0 0 0 0 0 0 0 0 1
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RNN for Text Classification

Step 5: Initialize All Weights

Embedding 
Matrix (E)

e_11 … e_1k
e_21 … e_2k
… … …

e_v1 … e_vk

v → vocabulary size
k → embedding size

Weight 
Matrix (U)

u_11 … u_1k
u_21 … u_2k

… … …
u_k1 … u_kk

k → embedding size

Weight 
Matrix (V)

k → embedding size

v_11 … v_1k
v_21 … v_2k
… … …

v_k1 … v_kk

Weight 
Matrix (W)

k → embedding size

w_11
w_21

…
w_k1

Biases (bh)

k → embedding size

b_11 … b_1k

Biases (bo)

bo_11
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RNN for Text Classification

Step 6: Forward Pass

This
1 0 0 0 0 0 0 0 0 0
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RNN for Text Classification

Step 6: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1
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RNN for Text Classification

Step 6: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1

h0

0 0 0 0 0 0 0 0 0 0
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RNN for Text Classification

Step 6: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1

h0

0 0 0 0 0 0 0 0 0 0

h1 = 𝝈(Ux1 + Vh0 + bh)
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RNN for Text Classification

Step 6: Forward Pass

This movie

h1

x1

h0
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RNN for Text Classification

Step 6: Forward Pass

This

h1

movie
0 0 1 0 0 0 0 0 0 0

E

x2x1

h0
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RNN for Text Classification

Step 6: Forward Pass

This

h1

movie
0 0 1 0 0 0 0 0 0 0

E

x2

h2 = 𝝈(Ux2 + Vh1 + bh)

x1

h0
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RNN for Text Classification

Step 6: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5
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RNN for Text Classification

Step 6: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)
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RNN for Text Classification

Step 6: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = Negative
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RNN for Text Classification

Step 7: Calculate Loss

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = NegativeActual Label 
= Positive
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RNN for Text Classification

Step 7: Calculate Loss

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = NegativeActual Label 
= Positive

Loss
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RNN for Text Classification

Step 8: Backpropagation

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = NegativeActual Label 
= Positive

Loss
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RNN for Text Classification

Gradient Descent: Repeat steps 6-8
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RNN for Text Classification

Step 9: Final Inference

That

h1

movie

x2

h2

x1

h0

was great .

x3 x4 x5

h3 h4 h5

o5 = Positive



Beyond RNNs: 
LSTMs and 
Attention

114
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Long Short-Term Memory (LSTMs)

The movie was good .

RNN RNN RNN RNN RNN

Positive

the movie was good .

RNN RNN RNN RNN RNN

Positive

be lying if I said

RNN RNN RNN RNN RNN

I’d

RNN

RNNs cannot handle long context
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Input 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

LSTM Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Input 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Output 
Gate
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Attention

RNNs and LSTMs use the information about the complete sentence 
at all times.
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Attention

RNNs and LSTMs use the information about the complete sentence 
at all times.

But is that really necessary?
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Attention

How was your day [START]

RNN RNN RNN RNN RNN

Comment

Comment

RNN

se

se

RNN

passe

passe

RNN

ta

ta

RNN

journée
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Attention

How was your day [START]

RNN RNN RNN RNN RNN

Comment

Comment

RNN

se

se

RNN

passe

passe

RNN

ta

ta

RNN

journée

This should only really require 
the inputs ‘How was’
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Attention

How was your day [START]

RNN RNN RNN RNN RNN

Comment

Comment

RNN

se

se

RNN

passe

passe

RNN

ta

ta

RNN

journée

This should only really require 
the input ‘your’
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Attention

How was your day [START]

RNN RNN RNN RNN RNN

Comment

Comment

RNN

se

se

RNN

passe

passe

RNN

ta

ta

RNN

journée

This should only really require 
the input ‘day’
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Attention

How was your day [START]

RNN RNN RNN RNN RNN

Comment

Comment

RNN

se

se

RNN

passe

passe

RNN

ta

ta

RNN

journée

Not all information is always needed, and ‘focusing’/‘attending’ on 
certain information more can help the language model
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Attention

A mechanism to allow neural networks to dynamically focus on 
various parts of the input based on the current task.



130

Attention
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Attention

I want a piece 
with yellow color

Query
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Attention

I want a piece 
with yellow color

Query

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Green and Brown
Dark Green

Keys
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Attention

I want a piece 
with yellow color

Query

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Green and Brown
Dark Green

Keys
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Attention

Values
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Self-Attention

Self-attention is assigning importance to various words in context of 
other words in the same sentence, capturing dependencies between 
different words in the sentence.
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Self-Attention

Self-attention is assigning importance to various words in context of 
other words in the same sentence, capturing dependencies between 
different words in the sentence.
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Self-Attention
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Self-Attention
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Transformers

The movie was good .



140

Transformers

The movie was good .

Embedding Layer* *Word embedding AND 
Position Embedding
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Transformers

The movie was good .

Multi-Head Self-Attention

Fully Connected Layer

Embedding Layer* *Word embedding AND 
Position Embedding
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Transformers

The movie was good .

Multi-Head Self-Attention

Fully Connected LayerWhere the weights 
are learned

Responsible for flow of 
information across 

words in the sentence.

Embedding Layer* *Word embedding AND 
Position Embedding
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Transformers

The movie was good .

Multi-Head Self-Attention

Fully Connected Layer

Multi-Head Self-Attention

Fully Connected Layer

…
×k

Embedding Layer* *Word embedding AND 
Position Embedding



Some Bonus Topics
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Large Language 
Models (LLMs)

145



146

Large Language Models (LLMs)

Large language models are 
- complex neural networks (generally, transformers)
- pre-trained with self-supervised learning objective 
- on a large corpus of training data
- and are capable of performing various tasks out-of-the-box or 

with little fine-tuning
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Large Language Models (LLMs)

Large language models are 
- complex neural networks (generally, transformers)
- pre-trained with self-supervised learning objective 
- on a large corpus of training data
- and are capable of performing various tasks out-of-the-box or 

with little fine-tuning
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BERT
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GPT
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LLM Sizes
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Large Language Models (LLMs)

Large language models are 
- complex neural networks (generally, transformers)
- pre-trained with self-supervised learning objective 
- on a large corpus of training data
- and are capable of performing various tasks out-of-the-box or 

with little fine-tuning
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Masked Language Modeling
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Causal Language Modeling
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BERT vs GPT
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Large Language Models (LLMs)

Large language models are 
- complex neural networks (generally, transformers)
- pre-trained with self-supervised learning objective 
- on a large corpus of training data
- and are capable of performing various tasks out-of-the-box or 

with little fine-tuning
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Common Crawl
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Bookcorpus Dataset

~ 11k Books
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GPT-3 Dataset

~ 1.4TB
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The Pile Dataset
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Large Language Models (LLMs)

Large language models are 
- complex neural networks (generally, transformers)
- pre-trained with self-supervised learning objective 
- on a large corpus of training data
- and are capable of performing various tasks out-of-the-box or 

with little fine-tuning
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Recall Transfer Learning and Fine-tuning
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In-Context Learning

In-context learning is the capability of LLMs to perform certain tasks 
by conditioning on a few examples and/or task instructions, without 
requiring explicit parameter updates or additional training.
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In-Context Learning
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In-Context Learning
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Why does In-Context Learning work?

LLMs are stochastic parrots



Extension of LLMs
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Multilingual LLMs
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Instruction-Tuned LLMs
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Vision Language Models



170

Vision Language Models
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LLMs and Knowledge Graphs



172

LLMs and Knowledge Graphs



Responsible NLP in 
the era of LLMs
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Content Warning: 
This content contains racist text generated by LLMs.
This content includes discussion of suicide.
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Bias in LLMs
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Bypassing Security Guardrails in LLMs
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Privacy Concerns with LLMs
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Interpretability and Explainability
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Accountability for LLMs
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Accountability for LLMs
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Accountability for LLMs


