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Right to Erasure (‘Right to be Forgotten’)

Act 17.1 GDPR: The data subject shall have the right to obtain from the controller the erasure of personal 

data concerning him or her without undue delay and the controller shall have the obligation to erase 

personal data without undue delay [...]

Act 17.2 GDPR: Where the controller has made the personal data public and is obliged pursuant to 

paragraph 1 to erase the personal data, the controller, taking account of available technology and the cost 

of implementation, shall take reasonable steps, including technical measures, to inform controllers which 

are processing the personal data that the data subject has requested the erasure by such controllers of any 

links to, or copy or replication of, those personal data.
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Removing data from 
a database is trivial!
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Need to retrain the model 
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Retraining every time is 

expensive! Can we do better?
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Defining Unlearning
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● Training is incremental

Update 1 Update 2 Update 3 Update 4

………..

Change in just one update changes 
everything that comes after!
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● Training is incremental

● Stochasticity in Training

● We have very little understanding of how each data point impacts the model!
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● Intelligibility: Any unlearning strategy should be intelligible.

● Comparable Accuracy: Any unlearning strategy should strive to introduce a small accuracy gap.

● Reduced Unlearning Time: The strategy should have provably lower time than brute retraining.

● Provable Guarantees: Provide provable guarantees that any number of points have been unlearned.

● Model Agnostic: The new strategy for unlearning should be general.

● Limited Overhead: Any new unlearning strategy should not introduce additional overhead to training.
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● The paper introduces a mathematical framework to formalize the ‘right to be forgotten’ in the context 

of machine learning.

● The paper discusses various challenges with the problem of unlearning, and provides a list of 

requirements that would make an unlearning algorithm actually useful.

● The paper introduces their own unlearning algorithm, called SISA, and show empirical improvements 

over other baseline unlearning methods.


