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Right to Erasure (‘Right to be Forgotten’)

Act 17.1 GDPR: The data subject shall have the right to obtain from the controller the erasure of personal
data concerning him or her without undue delay and the controller shall have the obligation to erase
personal data without undue delay [...]

Act 17.2 GDPR: Where the controller has made the personal data public and is obliged pursuant to
paragraph 1 to erase the personal data, the controller, taking account of available technology and the cost
of implementation, shall take reasonable steps, including technical measures, to inform controllers which
are processing the personal data that the data subject has requested the erasure by such controllers of any
links to, or copy or replication of, those personal data.
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Machine Unlearning is not trivial!

e Training is incremental
e Stochasticity in Training

e We have very little understanding of how each data point impacts the model!
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Formalizing Machine Unlearning

Definition IIL.1. Let D = {d; : i € U} denote the training
set collected from population 4. Let D’ = D U d,,. Let D
denote the distribution of models learned using mechanism M
on D’ and then unlearning d,,. Let D,..q; be the distribution of
models learned using M on D. The mechanism M facilitates
unlearning when these two distributions are identical.
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Formalizing Machine Unlearning

A New Learning Mechanism
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Goals of Unlearning

e Intelligibility: Any unlearning strategy should be intelligible.

e Comparable Accuracy: Any unlearning strategy should strive to introduce a small accuracy gap.

e Reduced Unlearning Time: The strategy should have provably lower time than brute retraining.

e Provable Guarantees: Provide provable guarantees that any number of points have been unlearned.
e Model Agnostic: The new strategy for unlearning should be general.

Limited Overhead: Any new unlearning strategy should not introduce additional overhead to training.
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To Sum Up...

The paper introduces a mathematical framework to formalize the ‘right to be forgotten’ in the context
of machine learning.

e The paper discusses various challenges with the problem of unlearning, and provides a list of
requirements that would make an unlearning algorithm actually useful.

e The paper introduces their own unlearning algorithm, called SISA, and show empirical improvements
over other baseline unlearning methods.
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