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Abstract—Community or modular structure is considered to
be a significant property of large scale real-world graphs such
as social or information networks. Detecting influential clusters
or communities in these graphs is a problem of considerable
interest as it often accounts for the functionality of the system. We
aim to provide a thorough exposition of the topic, including the
main elements of the problem, a brief introduction of the existing
research for both disjoint and overlapping community search, the
idea of influential communities, its implications and current state
of the art and finally provide some insight on possible directions
for future research.

I. INTRODUCTION

Many large scale real-world networks like social networks
consist of community structures. Disciplines where systems
are often represented as graphs, such as sociology, biology
and computer science contain examples of such large scale
networks and community structures present in them [1]. The
problem of discovering communities in a large scale network is
a problem which has attracted much attention in recent years
[2], [3]. A similar problem is community search where the
goal is to find the most likely community that contains an
input query node [4], [5]. The community discovery problem
is focused on identifying all communities present in a network
[2]. On the other hand, the community search problem is a
query-dependent variant of the community discovery problem,
which aims to find the community that contains the query node
[4].

An important aspect of communities, which is ignored by
the older community detection algorithms, and have been
very recently introduced in these field is the influence of a
community [1]. Finding the ’r’ most influential communities
in a network has widespread applications and has fueled a
lot of recent research in this area. The common approaches
used in this field includes index based search [1], heuristics
based on common graph structures like cliques [6], k-cores [7],
multi-values graphs [8], online searches, both global [1] and
local [9] and introduction of novel data structures [7] among
many others. We try to cover them all and also provide a
quantitative, as well as a qualitative, comparison between the
two, along with directions for future research.

II. MOTIVATION

The problem of community search over very large graphs is
a fundamental problem is graph analysis. However certain ap-
plications require us to find the ’r’ most influential communi-
ties in the graph. Consider the following examples as described
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in Bi et al. [9]. Assume that Alice is a database researcher.
She may want to identify the most influential research groups
from the co-authorship network of the database community,
so as to be aware of the recent trends of database research
from those influential groups. Another frequently encountered
example is in online social network domain. Suppose that Bob
is an online social network user. He may want to follow the
most influential groups in the social network, so as to track
the recent activities from those influential groups.

Both of these issues are common in the sense that they need
to find communities in a graph with an additional property of
having high influence. A possible definition of influence value
can be defining it as the minimum weight of the nodes in that
community [1]. An influential community is the one which
has a large influence value, which in this case would mean
every member of the community is highly influential (since
we are taking the minimum).

There has been a sudden outburst of different techniques in
this field in the last few years, both in terms of new heuristics
in the detection of most influential communities and in terms
of speeding up the search algorithms. We aim to provide a
thorough survey of the current progress as an entry point
for future researchers and insights on possible future research
directions.

III. PROBLEM STATEMENT

Consider a Graph G(V, E) where V is the set of vertices
and E is the set of edges. Let d(v, G) be defined as the degree
of vertex v in graph G i.e number of edges coming out of v.
A graph H(V}, E}) is defined as an induced subgraph of G
if V), CV and Ep, = {(u,v) : u,v € V3, (u,v) € E}. A k-
core is an induced subgraph where the degree of each node is
atleast k ( d(v, H) > k). A maximal k-core is a k-core which
is not a subset of any other k-core. Clearly, every graph will
have a unique maximal k-core for every values of 'k’.

To introduce the concept of influence we assign a weight
to each node which can be interpreted as its influence (such
as PageRank, h-index etc). A weight vector of a Graph is the
set of all weights assigned to the nodes.

Given a graph G(V, E) and an induced graph H(V}, E},),
we define a function to compute the influence of this induced
subgraph. One possible definition, as discussed earlier, could
be taking the minimum weight present in the induced sub-
graph. The intuition behind it is that an induced subgraph is
as influential as its least influential member [1]. Another way



could be taking the average of all the weights present in the
subgraph or even a more complex function can be defined.

A k-influential community [1] is an induced subgraph Hy, =
(Vi, Ex) of G that :-

1) Is connected

2) Each node has degree atleast k

3) Is maximal

Problem : Given a graph G = (V| E), a weight vector W,
and two parameters k and r, the problem is to find the top-r
k-influential communities with the highest influence value. [1]

IV. ALGORITHMS USED

The problem statement for finding the most influential
communities was first formulated by Li et al [1]. They
developed a formal definition of influence of an individual and
a community, and suggested various methods and optimization
to solve the problem. The idea behind their algorithm is to start
with the maximal k-core of the graph and then remove nodes
from it one at a time, following a certain rule, which will give
us the communities present in the graph in an increasing order
of influence. The details of the algorithm are discussed below.

k-core : The first step is to calculate the maximal k-core of
the graph. This will contain disjoint sets of connected compo-
nents, each of them satisfying the definition of a community.
We then remove a node, present in the k-core, which has the
least influence and store its parent community. The maximal
k-core of this new graph (formed after removing the node
as mentioned above) is calculated and the whole process is
repeated again, until we find no maximal k-core.

The authors defined the influence of a community equal to
the least influential node present in the community. Due to
the use of this definition, the influence value of the commu-
nity stored at any iteration will be the least among all the
communities present in the k-core at that iteration, since it
contains the node with the least influence. This ensures that
the influence value of communities stored at every iteration
keeps on increasing. The final output of the algorithm, i.e. the
top-r k-influential communities, are the communities stored in
the last r iterations.

Calculating k-core for every iteration was identified by the
authors as the costliest part of the algorithm. In a graph with m
edges, the time taken by the algorithm to perform ny iterations
is O(ngpm) [1]. It is easy to notice that the only change
between the maximal k-core of two consecutive iterations
occurs in the community from which the least influential node
was removed. Thus, as suggested by Li et al [1], we can easily
avoid recalculating the k-core at every iteration by using the
k-core of the previous iteration, and removing certain nodes
from it which are not a part of the k-core anymore. These
nodes can be easily identified by performing DFS from the
removed node [1]. The optimization proposed above reduces
the time complexity of our algorithm to O(m + n), where m
and n represent the edges and vertices present in the graph
respectively.

ICPS : The method of using DFS is sufficiently fast when
dealing with only a single query of finding the top-r k-

influential communities. However, repeating the same process
for different values of k becomes infeasible for large graphs.
A naive approach to overcome this could be to store the top-
r k-influential communities for every value of k upto some
kmaz- The time complexity now will be O(ky,q.(m +n)) for
any number of queries. An obvious limitation to this method
is the amount of space required to store the answers for every
value of k.

To counter this limitation, Li et al [7] introduced a novel
data structure, called influential community-preserved struc-
ture (ICPS). This structure compresses and stores the top-r k-
influential communities for all values of k upto k4, in space
complexity O(m). Once this data structure is created, it takes
time O(n,), where n, represents the number of vertices in the
answer, to extract the answer for any query. Li et al [7] also
suggested an optimization to this precomputation, reducing
the time complexity to O(pm), where p is the arboricity of
the graph, m total number of edges. The arboricity of an
undirected graph is the minimum number of forests into which
its edges can be partitioned.

Forward / Backward Algorithm : Chen et al [10] provided
two important extensions to the above algorithm, namely
forward and backward algorithms. They identified the compu-
tation of Maximal Connected Component (MCC) as the slow
step of the algorithm. MCC computation is done at the end
of each iteration, to find the parent community of the deleted
node. The forward algorithm, maintain a hash table to keep
track of the deleted nodes and then computes the MCCs later
in the reverse order, thereby ensuring that only the top-r most
influential communities are computed.

The backward algorithm, start with the most influential
node present in the graph and then adds nodes in decreasing
order of influence. After every addition, the algorithm checks
whether the k-core property is satisfied, thus finding the top-r
k-influential communities from most influential to least. The
process is rather slow as compared to forward algorithm,
however outperforms it for very small values of r. Thus, for
smaller values of r, backward algorithm should be used, and
switch to forward algorithm when the value of r increases.
Chen et al [10] also used WebGraph [11], a graph compression
framework to reduce the space complexity of the compressed
graph storage.

LocalSearch : Bi et al [9] introduced LocalSearch, a
novel algorithm that works by reducing the community search
problem to a local area in a subgraph containing only the nodes
with influence greater than a threshold. The threshold influence
is chosen such that it is the minimum influence at which there
are atleast r k-influential communities in the subgraph. Any k-
influential community not found in this subgraph, but actually
present in the original graph, will have influence less than any
community found in this subgraph (since it will contain atleast
one node with influence less than the threshold). This way, the
top-r k-influential communities found in this subgraph will be
the top-r k-influential communities of the complete graph.

The algorithm proposed starts with a heuristically chosen
threshold and then expands the graph until there are at least



r k-influential communities in the sub graph. To speed up
the calculation of the number of k-influential communities in
a subgraph, the authors define a new term, keynode, which
is simply the least influential node of a k-community. The
advantage of finding just the keynodes is that we do not
need to calculate the MCCs of the graph. While removing
least influential nodes from the k-core, as done in the forward
algorithm by Chen et al [10], the algorithm also maintains an
array of all the nodes deleted during DFS at each iteration.
After all the iterations, instead of calculating MCCs for the
top r keynodes, it introduces a different recursive method
of identifying the communities. We start with all the nodes
deleted at the (7' — p)*” iteration, where T is the total number
of iterations. These are extended to include all the nodes in
the (p + 1) k-influential community which are connected to
them, thus resulting in the p!* k-influential community. The
first k-influential community is simply all the nodes deleted
in the last iteration. The proof of correctness can be found in
[9].

kr-clique : We have been discussing till now the optimiza-
tions for the algorithm defined by Li et al [1]. However, the
definition by Li et al [1] is not universally accepted. Wang
et al [6] recently introduced a new definition of influence,
and focused on the idea of using kr-clique rather than the
traditional k-core for finding top-r k-influential communities.
We will not be discussing the definition used by them, however
will discuss the algorithms they used, since their proposed
solutions can be easily translated to our problem statement.
A kr-clique is defined such that every node has k edges and
every nodes is reachable in atmost r hops from any node. This
ensures more cohesiveness in the community than a k-core,
since in a k-core two nodes can be very far from each other,
which is not true in a kr-clique.

Wang et al [6] first provides a baseline algorithm for their
influence model. The algorithm iterates through all the nodes
in the graph, computing maximal kr-clique for that node
and then calculating its influence. This is clearly a brute
force algorithm, not suitable for large graphs. To improve
the performance of the algorithm, the authors introduce a
novel data structure, namely C-tree, which indexes maximal
r-cliques generated by the graph. C-trees are space and time
efficient when it comes to generating kr-cliques. The authors
list four methods of searching through the C-tree, sequential-
order based (SO) search, improved sequential-order based
(SO+) search, best-first based (BF) search, and fast best first
based (BF+) search.

Progressive Approach : All the algorithms discussed above
outputs the final answer, i.e all the top-r k-influential commu-
nities, in one go. This leads to a significant latency between
the query and the result. To handle this Bi et al [9] suggests a
progressive approach in which the communities are generated
in decreasing order one after the other. In the first iteration,
the problem statement is finding the top-1 k-influential com-
munity. The threshold and subgraph is selected, as mentioned
in LocalSearch, and the top-1 k-influential community is
provided as the output. Now, the threshold is shifted, so as to

Graphs #vertices #edges o davg Vmax
Email 36,602 183,831 1,383 1002 43
Youtube 1,134,890 2,987,624 28,754 5.27 51
Wiki 1,791,489 25,446,040 238,342 2841 99
LivelJ 3,997,962 34,681,189 14,815 17.35 360
Orkut 3,072,627 117,185,083 33,313 T6.28 253
Arabic 22,744 080 553,903,073 575,628 4871 3,247
UK 39,459,925 783,027,125 1,776,858  39.69 588
Twiiter 41,652,230 1,468,365,182 2997487 7051 2488

Fig. 1. Statistics of real graph. Image courtesy Bi et al [9]

double the size of the subgraph. The LocalSearch now outputs
another set of k-communities. This process is repeated until
the require number of k-communities are provided.

V. DATASETS

Bi et al [9] provides an extensive comparison between
the algorithms discussed in this survey [1], [7], [9], [10]
by doing experiments across a variety of datasets. All the
experimentation results presented here were taken from Bi et
al [9]. The algorithms compared are,

1) OnlineAll :- DFS and ICPS based algorithm by Li et al

(11, [7].

2) Forward Algorithm :- Calculating MCCs for only the
relevant communities, by Chen et al [10].

3) Backward ALgorithm :- Iterating through the most in-
fluential nodes in a decreasing order, outperforming
forward algorithm for smaller values of r, by Chen et
al [10].

4) LocalSearch :- Local Search Algorithm as presented by
Bi et al [9]

5) LocalSearch-OA :- Local Search Algorithm presented by
Bi et al [9]. But using OnlineAll, instead of keynodes.
(For comparison purpose)

6) LocalSearch-P :- Local Algorithm algorithm with the
progressive approach integrated as shown by Bi et al
[9].

All algorithms were implemented in C++ and compiled in
GNU GCC 4.8.2 with the -O3 flag. The experiments were
conducted on Intel i5 3.20GHz CPU and 16GB main memory
[9].

Graphs : The dataset contains eight real graphs, Email,
Youtube, Wiki, LiveJ, Orkut, Arabic, UK and Twitter. The
first five are from the Stanford Network Analysis Platform
[12], and the last three are from the Laboratory of Web
Algorithmics [13]. The variability across different graphs can
be found in Fig 1. The two parameters r and k were varied
as follows, r chosen from {5, 10, 20, 50, 100} and k chosen
from {5, 10, 20, 50}. For every query the algorithms were
run three times and the average CPU time in milliseconds
was reported.

Note : The running convention used by Bi et al [9] is finding the top-k ~y-influential
communities, which conflicts with the conventions used in all the papers covered in this
survey. We will be sticking to our convention, however the graphs depicted in the later
sections, courtesy Bi et al [9], contains the conventions used by them, which should
not be correlated with the variables of our convention. Each graph is provided with a
descriptive label to avoid any confusion.
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VI. COMPARATIVE ANALYSIS

The OnlineAll and Forward algorithms work on the whole
graph for any value of k and r and hence there is very little
change in the total time taken for processing queries when the
values of k or r are varied. The forward algorithm performs
slightly better than the OnlineAll algorithm because of the
reduced number of Maximal Connected Component(MCC)
computations. (refer to Fig 2,3,4)

The Backward algorithm starts from the most influential
community and stops when the top-r most influential commu-
nities have been found. Hence the time taken by Backward
algorithm increases with the increase in the value of r (refer
to Fig 5).

The total time for LocalSearch algorithm increases as we
increase r keeping k constant. This can be easily explained,
since at a higher value of r, the subgraph formed will be
larger in size and hence the time taken will be more. Similar
reasoning can be given for varying k and keeping r constant.
The increase in the value of k means a larger sub graph is
required to satisfy the stronger cohesive property and hence
an increase in total time can be seen (refer to Fig 8).

LocalSearch-P outperforms every algorithm that we have
discussed in this paper, including the variations LocalSearch
and LocalSearch-OA (refer to Fig 2,3,4,5,6,8).

A comparison was done for the time taken to output
top-p k-influential communities, p varying for O to r. Since
LocalSearch gives the complete output in one go, the time
for every value of p is the same. However, the progressive
approach delivers the initial results almost immediately and
then the time taken gradually increases (refer to Fig 8).

VII. EXTENSIONS

In this section we will discuss a few extensions to the
problem statement as discussed in this survey.

A. Non-containment Community Search

Following the definition of k-communities, it is possible that
an influential k-community is a subgraph of another influential
k-community. However, for most of the practical applications,
one would prefer to not have such relations present in the
output. Thus the problem statement of finding top-r non-
containment influential k-communities was introduced.

OnlineAll [1] checks for every community generated
whether it contains a k-core or not and only those are
considered for the final output which have no k-cores present
in it. Forward Algorithm [10] uses an additional array to store
the degree of a node and then used its value to check for

non-containment. A slight modification in LocalSearch [9] was
also suggested in the algorithm to tackle the above task. To
summarize we can say that the modified problem statement
can be easily solved by providing slight modifications to the
existing algorithms.

B. Other Cohesiveness Measures

In this survey we came across two structures which were
used to define cohesiveness in a graph, the k-core definition
[1], [9], [10] to ensure that each node is connected to at least
k different nodes and kr-clique [6] to concentrate more on the
compactness in a graph. The kr-clique structure puts a limit
to the maximum distance between two nodes in a community
thereby ensuring more compactness. This also results in lesser
number of k-communities. The definition of cohesiveness can
depend on our need or on the problem statement we are trying
to solve and different algorithms may be experimented with
to get the best results.

C. Mutli-dimensional Influence value

Till now in our discussion, the influence of a node is a single
numerical attribute associated with it. For many practical
purposes however, one single numerical value might not be
enough to represent the influence of a node. For example, in a
collaboration network every author can have multiple attributes
like number of published papers, sociability, diversity, activity
etc. The simplest approach might be to take a linear function
of these attributes as the one numerical attribute and use
the algorithms discussed above but this might not capture
the details as desired. A novel community model, named the
skyline community model, was introduced recently Li et al [8]
to solve this specific problem.

VIII. CONCLUSION AND FUTURE WORK

We have produced a survey that can be used to get familiar
with the domain of influential community search and get the
reader acquainted with the research already done in this field.
We provide an analysis of the basic k-core algorithm used and
several optimization proposed over the years. In this survey
we cover several methods for searching the top-r k-influential
communities, comparing various optimizations, and touching
on the varying definition of influence.

One possible direction of future work can be exploring even
more definitions of cohesiveness in order to obtain tightly knit
communities. The other possible direction of future work is to
explore the possibility of updating of influence of nodes online
and to integrate the existing algorithms into compressed graphs



that fit in the memory. These are all interesting areas of future
work.
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