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- NLP, NLU and NLG
- Syntax and Parsing

Subject/Verb Phrase

Prepositional Phrase

Noun Phrase Noun Phrase

Article Noun Verb Prep. Article Noun

| 1 N - |
The cat sat on the mat.
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A quick recap ...

NLP, NLU and NLG

Syntax and Parsing

Semantics and Pragmatics
Word

Semantic

pen
pen
pen
pen
pen

a writing tool

a livestock’s enclosure

a portable enclosure for a baby
a correctional institution

a female swan
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A quick recap ...

- Bag of Words
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A quick recap ...

- Bag of Words

| love this movie! It's sweet,
but with satirical humor. The
dialogue is great and the
adventure scenes are fun...
It manages to be whimsical
and romantic while laughing
at the conventions of the
fairy tale genre. | would
recommend it to just about
anyone. |'ve seen it several
times, and I'm always happy
to see it again whenever |
have a friend who hasn't
seen it yet!

it
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A quick recap ...

- Bag of Words
- Bag of n-grams
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A quick recap

- Bag of Words
- Bag of n-grams

Bag of Words

The cat sat on the mat.

Bag of 2-grams
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A quick recap ...

- Bag of Words
- Bag of n-grams
- Continuous Bag of Words
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A quick recap ...

Bag of Words
Bag of n-grams
Continuous Bag of Words
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A quick recap ...

- Bag of Words

- Bag of n-grams

- Continuous Bag of Words

- Masked Language Modeling
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A quick recap ...

- Bag of Words

- Bag of n-grams

- Continuous Bag of Words

- Masked Language Modeling

Sentence:

The keys to the cabinet
[MASK] on the table|

Sentence:

The [MASK] to the cabinet
were on the tablel

Sentence:

Mask 1 Predictions:

)

The [MASK] to the cabinet
[MASK] on the table.\

/0.3% were

10.1% lay

Mask 1 Predictions:
2.7% keys

1.7% contents

Mask 1 Predictions:
708% keys
18.2% key

Mask 2 Predictions:

36.6% was
9.0% were
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A quick recap ...

- Bag of Words

- Bag of n-grams

- Continuous Bag of Words

- Masked Language Modeling
- Causal Language Modeling
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A quick recap ...

- Bag of Words

- Bag of n-grams

- Continuous Bag of Words

- Masked Language Modeling
- Causal Language Modeling
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A quick recap ...

- Embeddings
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A quick recap ...

Embeddings

one hot encoding
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NLP Pipeline

T

[ Distribution over Tokens

O owwiew

—J

All models we will study...

—
f
[ Tokenization

T

Input Sentence

—
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Any questions from previous sessions?
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Goals today...

- Convolutional Neural Networks (CNNs)

- Recurrent Neural Networks (RNNs)

- Long Short-term Memory Networks (LSTMSs)
- Attention

- Self-Attention and Transformers
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Positional
Equivariance
and Positional
Awareness
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Positional Equivariance
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Positional Equivariance

“This is awful”
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Positional Equivariance

“This is awful”

“The customer service was really a challenge to deal with. Honestly, this is
awful”
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Positional Equivariance

“This is awful”

“The customer service was really a challenge to deal with. Honestly, this is
awful”

“This is awful. The customer service was really a challenge to deal with.”
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Positional Equivariance

“This is awful”

“The customer service was really a challenge to deal with. Honestly, this is
awful”

“This is awful. The customer service was really a challenge to deal with.”

“I was promised a delivery yesterday, but nothing arrived. | called customer
support, got transferred four times, and each person gave me a different
explanation. Now I’'ve wasted my entire afternoon trying to fix something that
wasn’t my fault — this is awful”
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Positional Equivariance

“This is awful.”

“The customer service was really a challenge to deal with. Honestly, this is
awful.”

“This is awful. The customer service was really a challenge to deal with.”

“I was promised a delivery yesterday, but nothing arrived. | called customer
support, got transferred four times, and each person gave me a different
explanation. Now I’'ve wasted my entire afternoon trying to fix something that
wasn’t my fault — this is awful”
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Processing Time Series Data

To deal with language, we need local positional equivariance, i.e., they apply
the same function regardless of position, but global positional awareness!
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Using MLPs?
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Using MLPs?

|

The*w1 +
customer*w?2 +
service*w3 + was*w4

+
bad*w5
The customer service was bad
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Using MLPs?

|

Bad*w1 +
was*w2 +
the*w3 +
customer*w4 +
service*w5

T

Bad was the customer service
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Using MLPs?

Bad

was

the

customer

service
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Using CNNs




Using CNNs

Meaning of all three
chunks combined.

CNN

Chunk 1 Chunk 2

Chunk 3
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Using CNNs

Meaning of “This is
awful”.
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Using CNNs

Meaning of “The customer
service was bad”.

The customer service
customer service was

service was bad




Using CNNs

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using CNNs

Meaning of
“The customer
service”

|

CNN

TN

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using CNNs

Meaning of Meaning of
“The customer “customer
service” service was”

I\

The customer service was really a challenge to deal with. Honestly, this is awful.




Using CNNs

Meaning of Meaning of Meaning of
“The customer “customer “this is awful”
service” service was”

The customer service was really a challenge to deal with. Honestly, this is awful.




Using CNNs
|

Meaning of Meaning of .
. . Meaning of
The customer customer Cilte »
o ) ., this is awful
service service was

The customer service was really a challenge to deal with. Honestly, this is awful.




Using RNNs




Using RNNs

Meaning till
now

RNN

New
chunk

Updated meaning
including the new chunk
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Using RNNs

Meaning of
“The”

RNN

“customer”

Meaning of “The
customer”
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Using RNNs

Meaning of “The
customer”

RNN

“service”

Meaning of “The
customer service”
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Using RNNs

Meaning of “The
customer service”

RNN

(13 WaS”

Meaning of “The
customer service was”

53

# Mila



Using RNNs

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using RNNs

Meaning

RNN o

“Theu

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using RNNs

Meaning Meaning of

of
“Th e”

— RNN ——  “me

customer”

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using RNNs

Meaning of Meaning of
“The —> RN N —> “The customer
customer” service”

The customer service was really a challenge to deal with. Honestly, this is awful.




Using RNNs

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using RNNs

Meaning of the

—>] RNN — whole

sentence

T~

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using Transformers
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Using Transformers

Meaning of the sentence

|

Transformer
All words like a bag but with position
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Using Transformers

Meaning of “The customer
service was bad”

Transformer
The customer service was
1 2 3 4

bad

62

# Mila



Using Transformers

The customer service was really a challenge to deal with. Honestly, this is awful.
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Using Transformers

The customer service was really a challenge to deal with. Honestly, this is awful.
1 2 3 4 5 67 8 9 10 1112 1314 1516 17
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Using Transformers

Meaning of the
whole
sentence

T

Transformer

T

The customer service was really a challenge to deal with. Honestly, this is awful.
1 2 3 4 5 67 8 9 10 1112 1314 1516 17
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NLU Pipeline

Ol~0/0[@]

The

or or
o @ =
® @
© S
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Embedding Layer

movie was good

Tokenization

The movie was good.

Ol~[0/@l@|
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Convolutional
Neural Networks
(CNNs)




Convolutional Neural Networks (CNNSs)
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Convolutional Neural Networks (CNNSs)

The movie yesterday was good
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Convolutional Neural Networks (CNNSs)

CNN
Cell
The movie yesterday was good
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Convolutional Neural Networks (CNNSs)

CNN CNN
Cell Cell
movie yesterday good

4l




Convolutional Neural Networks (CNNSs)

CNN CNN CNN CNN
Cell Cell Cell Cell
movie yesterday good
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Convolutional Neural Networks (CNNSs)

CNN
Cell 2
CNN CNN CNN CNN
Cell Cell Cell Cell
movie yesterday good
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Convolutional Neural Networks (CNNSs)

CNN CNN

Cell 2 Cell 2
CNN CNN CNN CNN
Cell Cell Cell Cell
movie yesterday good
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Convolutional Neural Networks (CNNSs)

Positive
Add
CNN CNN
Cell 2 Cell 2
CNN CNN CNN CNN
Cell Cell Cell Cell
movie yesterday good
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Convolutional Neural Networks (CNNSs)

Positive
Add
CNN CNN
Cell 2 Cell 2
,[ ]\ Early layers capture local
CNN CNN CNN CNN information, in a ‘positionally
/CTL><C€u|><l><'CMKqUIvanant’ o
movie yesterday good
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Convolutional Neural Networks (CNNSs)

Positive

|

Add

Information becomes more

/\ global as we go deeper
CNN CNN
Cell 2 Cell 2
CNN CNN CNN
Cell Cell Cell
movie yesterday good
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Convolutional Neural Networks (CNNSs)

Positive

Can handle variable

/‘\ length inputs

CNN CNN CNN

Cell 2 Cell 2 Cell 2
CNN CNN CNN CNN CNN
Cell Cell Cell Cell Cell
movie yesterday good
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Recurrent Neural
Networks (RNNs)




Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

The movie was good
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Recurrent Neural Networks (RNNs)

RNN
Cell

The movie was good
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Recurrent Neural Networks (RNNs)

RNN RNN

Cell Cell
The movie was good
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Recurrent Neural Networks (RNNs)

RNN RNN RNN

Cell Cell Cell
The movie was good
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Recurrent Neural Networks (RNNs)

RNN RNN RNN RNN
Cell Cell Cell Cell

I

The movie was good
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Recurrent Neural Networks (RNNs)

RNN RNN RNN RNN RNN
Cell Cell Cell Cell Cell

ST T

The movie was good
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Recurrent Neural Networks (RNNs)

Positive

RNN RNN RNN RNN RNN

Cell Cell Cell Cell Cell
The movie was good




Recurrent Neural Networks (RNNs)

Captures the inherent

sequential nature of language. Positive

—

RNN RNN RNN RNN RNN
Cell Cell Cell Cell Cell

I

The movie was good

88
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Recurrent Neural Networks (RNNs)

Negative

RNN RNN RNN RNN RNN RNN
Cell Cell Cell Cell Cell Cell

I

The movie was not good

Can handle variable
length inputs




Recurrent Neural Networks (RNNs)

RNN RNN

Cell Cell
The movie

Positive

RNN RNN RNN
Cell Cell Cell

|

was good

\I/;

Inputs (x))

20




Recurrent Neural Networks (RNNs)

Positive

Hidden states (h)
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Recurrent Neural Networks (RNNs)

Outputs (o))

\» Positive

RNN RNN RNN RNN RNN

Cell Cell Cell Cell Cell
The movie was good
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Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

Hidden state from
the previous cell

h

i-1

X. .
I Current input
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Recurrent Neural Networks (RNNs)

Hidden state from
the previous cell

h

i-1

X. .
I Current input
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Recurrent Neural Networks (RNNs)

Hidden state from
the previous cell

h

i-1

\'}

RNN Cell

—p> Activation (6) ————> hi

X. .
I Current input

h.=o(Ux, +Vh._ +b )
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Recurrent Neural Networks (RNNs)

RNN Cell
Hidden state from Hidden state to
the previous cell \"/ the next cell
hi-1 ﬁ —Pp> Activation (6) ——> hi _ hi

h.=o(Ux, +Vh._ +b )

X. .
I Current input
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Recurrent Neural Networks (RNNs)

Hidden state from
the previous cell

h

\'}

Activation (o) —» oi Output

i-1

A
RNN Cell
w
Hidden state to
the next cell
ﬁ —> Activation (6) ——> hi > hi

h.=o(Ux, +Vh._ +b )
o, =o(Wh. +b )

X. .
I Current input
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Example: RNN for
Sentiment
Classification




RNN for Text Classification

Objective: Given a sentence s, predict whether it

contains positive or negative sentiments.
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RNN for Text Classification

Objective: Given a sentence s, predict whether it

contains positive or negative sentiments.

Eg: That movie was awful. - Negative

101
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RNN for Text Classification

Step 1: Collect Data

Sentence Prediction
This movie is great. Positive
That movie was good. Positive
This movie is awful. Negative
That movie was bad. Negative

102
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RNN for Text Classification

Step 2: Tokenize Data and Create a Vocabulary

Sentence

Tokens

This movie is great.

“ThiS” “movie” “iS” “great” “.U

That movie was good.

“That” “movie” “WaS” “good” “wn

This movie is awful.

“ThiS” “movie” “iS” “anul” “.”

That movie was bad.

“That” “movie” “WaS” “bad” “.”

Vocabulary

“ThiS” “That” “movie” “iS" “WaS” “great” “good" “awful’l
“bad” “-”

103
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RNN for Text Classification

Step 3: Encode Sentences

This That movie is was great good awful bad
This 1 0 0 0 0 0 0 0 0
movie 0 0 1 0 0 0 0 0 0
is 0 0 0 1 0 0 0 0 0
great 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0
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RNN for Text Classification

Step 4: Initialize All Weights

Embedding Weight Weight Weight

Matrix (E) Matrix (U) Matrix (V) Matrix (W)
e 1 e_1k u_n u_1k v_11 v_1k w_11
e_21 e_2k u_21 u_2k v_21 v_2k w_21
eV .. ek UKl . ukk VKl . vkk w_Ki

v = vocabulary size

k » embedding size k » embedding size k # embedding size k ® embedding size
Biases (b,) Biases (b )
b1l .. b_1k bo_11

k ® embedding size
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RNN for Text Classification

Step 5: Forward Pass

[1]oJofofofoJoJofofo]
This
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RNN for Text Classification

Step 5: Forward Pass

[1]oJofofofoJoJofofo]
This
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RNN for Text Classification

Step 5: Forward Pass

[ojofoJofofofoofof0O]
h

o
X,
E
X
[1]oJofofofoJoJofofo]
This
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RNN for Text Classification

Step 5: Forward Pass

[0[ofoJoJofoJoJo[ofo]
h T » h,=0(Ux, +Vh +b,)

(1]

X,

]

E

X
[1/ofoJofofofofofofo]

This
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RNN for Text Classification

Step 5: Forward Pass

This movie
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RNN for Text Classification

Step 5: Forward Pass

1 2
E
X
[ofo[1]ofoJofofofo]o0]
This movie

M




RNN for Text Classification

Step 5: Forward Pass

h, T +> h, T > h,=0(Ux,+Vh +b)
X, X,
E
X
[0[o]1]ofofJofofofo]0]
This movie

12
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RNN for Text Classification

Step 5: Forward Pass

h o T -+ h ] T > h2 -—T-> h
X, X, X,
This movie is

great

13




RNN for Text Classification

Step 5: Forward Pass 0, =(Wh_+b)

This movie is great
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RNN for Text Classification

o, = Negative

Step 5: Forward Pass 0, =(Wh_+b)

This movie is great
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RNN for Text Classification

Actual Label
= Positive

Step 6: Calculate Loss 0, =(Wh_+b)

o, = Negative

This movie is great
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RNN for Text Classification

Actual Label <«—>» o_= Negative
= Positive s = Neg

Step 6: Calculate Loss 0, =(Wh_+b)

Loss

This movie is great
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RNN for Text Classification

Actual Label <«—>» o_= Negative
= Positive s = Neg

Step 7: Backpropagation o, =o(Wh_ +b)

new OL()
bt =0 =7, \
<
h, yd > h, VR h, h, —ﬁ—-» h, > h,
i i & T

X1 X2 X3 X a X5

Loss

This movie is great

18




RNN for Text Classification

Gradient Descent: Repeat steps 5-7

19




RNN for Text Classification

Step 8: Final Inference o, = Positive

That movie was great

120




Advanced RNNs:
LSTMs and
Attention




Long Short-Term Memory (LSTMs)

Positive

RNNs cannot handle long context I
RNN — RNN — RNN — RNN — RNN

I

The movie was good

x Positive

RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

R

I’d be lying if [ said the movie was good
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

123




Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

o, Output
RNN Cell
Hidden state from the Hidden S:Eate['[to the
previous cell next ce
Current
i input
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Represents long term
information from the ci_1
previous cell

h

i-1
Hidden state from the
previous cell

oi Output

RNN Cell
Long term

> C. information to
the next cell

—_— hi —_— hi
Hidden state to the
next cell

Current
input
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Represents long term
information from the ci_1
previous cell

h

i-1
Hidden state from the
previous cell

Long term

> C. information to
the next cell

Hidden state to the
next cell

oi Output
RNN Cell

{_ N
1 T I
! I
! I
—— — hi R hi

Forget

Gate

Current

input
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Long term

> C. information to
the next cell

Hidden state to the
next cell

Oi Output
RNN Cell
Represeqts long term (77N (T
information from the C., | - | :
i B | 1
previous cell | D ;
! 1! I
L L
—_
hi-1 - _ T w___1 —> hi hi
Hidden state from the Forget Input
previous cell Gate Gate
Current
i input
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Represents long term
information from the ci_1
previous cell

h

i-1
Hidden state from the
previous cell

oi Output
LSTM Cell
———. === =, Long term
([ } [ — > C. information to
: : : : . I the next cell
HEIEEE Y
—_—
S m e Nem=— N hi hi

Forget Input Output Hidden state to the
Gate Gate  Gate next cell

Current
i input
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Attention

RNNs and LSTMs use the information about the complete sentence
at all times.
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Attention

RNNs and LSTMs use the information about the complete sentence
at all times.

But is that really necessary?

130




Attention

Comment se passe ta journée

[ I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day




Attention

This should mainly requires the
inputs ‘How was’

A
- N

Comment se passe ta journée

[ I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day
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Attention

This should mainly requires the
input ‘your’

A

Comment se passe ta journée

[ I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day




Attention

This should mainly requires the
input ‘day’

A

Comment se passe ta journée

[ I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day

134 Ml|a



Attention

Not all information is always needed, and ‘focusing’/‘attending’ on
certain information more can help the language model

Comment se passe ta journée

I I I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day

135
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Attention

A mechanism to allow neural networks to dynamically focus on
various parts of the input based on the current task.
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Attention

# Mila
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Attention

Query

_

| want a piece
with yellow color
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Attention

Query

_

| want a piece
with yellow color

Keys

Yellow and Red

Yellow and Green

Red and Green

Green and Brown

Green and Brown
Dark Green
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Attention

Query

_

I want a piece
with yellow color

Keys

Yellow and Red

Yellow and Green

Red and Green

Green and Brown

Green and Brown
Dark Green
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Attention

Values

141




Attention

This should mainly requires the
inputs ‘How was’

A
- N

Comment se passe ta journée

[ I

RNN —= RNN — RNN — RNN — RNN — RNN — RNN — RNN — RNN

I

How was your day
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Self-Attention and
Transformers




Self-Attention

Self-attention is assigning importance to various words in context of
other words in the same sentence, capturing dependencies between
different words in the sentence.
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Self-Attention

# Mila




Self-Attention

Yellow and Blue w‘

Dark Green
Yellow and Red

Green and Brown

Yellow and Green
Yellow and Blue

! E Red and Green

Dark Green

Yellow and Red Dark Green
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Self-Attention

Yellow and Blue w‘ and Queries

Dark Green
Yellow and Red

Green and Brown

Yellow and Green
Yellow and Blue

! E Red and Green

Dark Green

Yellow and Red Dark Green
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Self-Attention

Yellow and Blue -
Dark Green
Yellow and Blue Dark Green

- Yellow and Green -

Yellow and Red

..

Dark Green

Green and Brown
F VS z
Red and Green

Yellow and Red
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Self-Attention

(Source-Target-Attention)
W(@ Kc.?, ) Valae
fl
o) ho)
TO\Y%CT Source
N y

(Self-Attention)

Self-attention is assigning importance to various words in context of
other words in the same sentence, capturing dependencies between
different words in the sentence.
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Self-Attention

The The
animal
didn’t didn’t
Cross Cross
the the
street street
because because
it
was was
too too
tired tired

150
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Transformers

The

movie

was

good
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Transformers

The movie was good .
1 2 3 4 5

152 ©Mila



Transformers

*Word embedding AND
Position Embedding

The movie was good .
1 2 3 4 5
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Transformers

To prepare ‘key’,
‘query’ and ‘value’

*Word embedding AND
Position Embedding

The movie was good .
1 2 3 4 5
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Transformers

information across

] Responsible for flow of
words in the sentence.

[ Multi-Head Self-Attention

To prepare ‘key’,
‘query’ and ‘value’

*Word embedding AND
Position Embedding

The movie was good .
1 2 3 4 5
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Transformers

xk

Multi-Head Self-Attention

Fully Connected Layer

Multi-Head Self-Attention
Fully Connected Layer

*Word embedding AND

Embedding Layer* Position Embedding

The movie was good 5
1 2 3 4 5
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Sneak Peek

e Large Language Models (LLMs) - ChatGPT, Claude, etc.
e Responsible NLP

In the next class

157




