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A quick recap …

- Bag of Words
- Bag of n-grams

The cat sat on the mat.

cat mat 
sat the 
on

The-cat
cat-sat
sat-on
on-the
the-mat

Bag of Words Bag of 2-grams
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A quick recap …
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A quick recap …

- Embeddings

embedding 
matrix
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NLP Pipeline

Embedding Layer

Tokenization

Input Sentence

All models we will study…

Output Layer

Output Sentence

Distribution over Tokens
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Any questions from previous sessions?
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Goals today…

- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Long Short-term Memory Networks (LSTMs)
- Attention
- Self-Attention and Transformers



Positional 
Equivariance 
and Positional 
Awareness
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Processing Time Series Data

To deal with language, we need local positional equivariance, i.e., they apply 
the same function regardless of position, but global positional awareness!
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Using MLPs?
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The*w1 + 
customer*w2 + 

service*w3 + was*w4 
+ 

bad*w5

The customer service was bad

Using MLPs?
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Bad*w1 + 
was*w2 + 
the*w3 + 

customer*w4 + 
service*w5

Bad was the customer service

Using MLPs?



39

Bad*w1 + 
was*w2 + 
the*w3 + 

customer*w4 + 
service*w5

Bad was the customer service

Using MLPs?
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Using CNNs
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CNN

Chunk 1 Chunk 2 Chunk 3

Meaning of all three 
chunks combined.

Using CNNs
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CNN

This is awful

Meaning of “This is 
awful”.

Using CNNs
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CNN

The 
customer 

service

customer 
service 

was

service 
was 
bad

Meaning of “The customer 
service was bad”.

Using CNNs



44

The customer service was really a challenge to deal with. Honestly, this is awful.

Using CNNs



45
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CNN

Meaning of 
“The customer 

service”

Using CNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

CNN

Meaning of 
“The customer 

service”

Meaning of 
“customer 

service was”

Using CNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

Meaning of 
“The customer 

service”

Meaning of 
“customer 

service was”
…

Meaning of 
“this is awful”

Using CNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

Meaning of 
“The customer 

service”

Meaning of 
“customer 

service was”
…

CNN

Meaning of 
“this is awful”

Using CNNs
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Using RNNs
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RNNMeaning till 
now

New 
chunk

Updated meaning 
including the new chunk

Using RNNs
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RNNMeaning of 
“The”

“customer”

Meaning of “The 
customer”

Using RNNs
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RNNMeaning of “The 
customer”

“service”

Meaning of “The 
customer service”

Using RNNs



53

RNNMeaning of “The 
customer service”

“was”

Meaning of “The 
customer service was”

Using RNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

RNN
Meaning of 

“The 
customer”

Meaning 
of 

“The”

Using RNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

RNN
Meaning of 

“The customer 
service”

Meaning of 
“The 

customer”

Using RNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

RNN ……

Using RNNs
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The customer service was really a challenge to deal with. Honestly, this is awful.

RNN
Meaning of the 

whole 
sentence

…

Using RNNs
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Using Transformers
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Transformer

All words like a bag but with position

Meaning of the sentence

Using Transformers
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Transformer

The
1

customer
2

service
3

was
4

bad
5

Meaning of “The customer 
service was bad”

Using Transformers



63

The customer service was really a challenge to deal with. Honestly, this is awful.

Using Transformers
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The customer service was really a challenge to deal with. Honestly, this is awful.
1     2             3          4    5       6 7             8  9      10  11 12        13 14  15 16   17

Using Transformers
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The customer service was really a challenge to deal with. Honestly, this is awful.

Transformer

Meaning of the 
whole 

sentence

1     2             3          4    5       6 7             8  9      10  11 12        13 14  15 16   17

Using Transformers
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NLU Pipeline

The movie was good .

Embedding Layer

Tokenization

The movie was good.

or                           or 1     2             3          4    5



Convolutional 
Neural Networks 
(CNNs)
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Convolutional Neural Networks (CNNs)
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The movie yesterday was good

Convolutional Neural Networks (CNNs)

.
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CNN 
Cell

Convolutional Neural Networks (CNNs)

.
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The movie yesterday was good

CNN 
Cell

CNN 
Cell

CNN 
Cell

Positive

Convolutional Neural Networks (CNNs)

CNN 
Cell 2

.
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Cell
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The movie yesterday was good

CNN 
Cell

CNN 
Cell

CNN 
Cell

Positive

Convolutional Neural Networks (CNNs)

CNN 
Cell 2

.

CNN 
Cell

CNN 
Cell 2

Add

Early layers capture local 
information, in a ‘positionally 

equivariant’ manner. 
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The movie yesterday was good

CNN 
Cell

CNN 
Cell

CNN 
Cell

Positive

Convolutional Neural Networks (CNNs)

CNN 
Cell 2

.

CNN 
Cell

CNN 
Cell 2

Add
Information becomes more 

global as we go deeper
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The movie yesterday was not

CNN 
Cell

CNN 
Cell

CNN 
Cell

Positive

Convolutional Neural Networks (CNNs)

CNN 
Cell 2

good

CNN 
Cell

CNN 
Cell 2

Add
Can handle variable 

length inputs

.

CNN 
Cell

CNN 
Cell 2



Recurrent Neural 
Networks (RNNs)

79



80

Recurrent Neural Networks (RNNs)
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Recurrent Neural Networks (RNNs)

The movie was good .
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell
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RNN 
Cell
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Cell
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive
Captures the inherent 

sequential nature of language.
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Recurrent Neural Networks (RNNs)

The movie was not good

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Negative

Can handle variable 
length inputs

.

RNN 
Cell
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Inputs (xi)



91

Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Hidden states (hi)
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Recurrent Neural Networks (RNNs)

The movie was good .

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

RNN 
Cell

Positive

Outputs (oi)
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Recurrent Neural Networks (RNNs)

RNN Cell

xi Current input
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1

Current input

Hidden state from 
the previous cell
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1

Current input

Hidden state from 
the previous cell

U

V
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

U

V
hi

hi = 𝝈(Uxi + Vhi-1 + bh)

Hidden state from 
the previous cell
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

Hidden state from 
the previous cell

U

V
hi hi

Hidden state to 
the next cell

hi = 𝝈(Uxi + Vhi-1 + bh)
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Recurrent Neural Networks (RNNs)

RNN Cell

xi

hi-1
Activation (𝝈)

Current input

Hidden state from 
the previous cell

U

V
hi hi

Hidden state to 
the next cell

oiActivation (𝝈) Output

W

hi = 𝝈(Uxi + Vhi-1 + bh)
oi = 𝝈(Whi + bo)



Example: RNN for 
Sentiment 
Classification
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RNN for Text Classification

Objective: Given a sentence s, predict whether it 
contains positive or negative sentiments.
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RNN for Text Classification

Objective: Given a sentence s, predict whether it 
contains positive or negative sentiments.

Eg: That movie was awful. → Negative
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RNN for Text Classification

Step 1: Collect Data

Sentence Prediction

This movie is great. Positive

That movie was good. Positive

This movie is awful. Negative

That movie was bad. Negative
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RNN for Text Classification

Step 2: Tokenize Data and Create a Vocabulary

Sentence Tokens

This movie is great. “This” “movie” “is” “great” “.”

That movie was good. “That” “movie” “was” “good” “.”

This movie is awful. “This” “movie” “is” “awful” “.”

That movie was bad. “That” “movie” “was” “bad” “.”

Vocabulary “This” “That” “movie” “is” “was” “great” “good” “awful” 
“bad” “.”
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RNN for Text Classification

Step 3: Encode Sentences

This That movie is was great good awful bad .

This 1 0 0 0 0 0 0 0 0 0

movie 0 0 1 0 0 0 0 0 0 0

is 0 0 0 1 0 0 0 0 0 0

great 0 0 0 0 0 1 0 0 0 0

. 0 0 0 0 0 0 0 0 0 1
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RNN for Text Classification

Step 4: Initialize All Weights

Embedding 
Matrix (E)

e_11 … e_1k
e_21 … e_2k
… … …

e_v1 … e_vk

v → vocabulary size
k → embedding size

Weight 
Matrix (U)

u_11 … u_1k
u_21 … u_2k

… … …
u_k1 … u_kk

k → embedding size

Weight 
Matrix (V)

k → embedding size

v_11 … v_1k
v_21 … v_2k
… … …

v_k1 … v_kk

Weight 
Matrix (W)

k → embedding size

w_11
w_21

…
w_k1

Biases (bh)

k → embedding size

b_11 … b_1k

Biases (bo)

bo_11
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RNN for Text Classification

Step 5: Forward Pass

This
1 0 0 0 0 0 0 0 0 0
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RNN for Text Classification

Step 5: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1
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RNN for Text Classification

Step 5: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1

h0

0 0 0 0 0 0 0 0 0 0
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RNN for Text Classification

Step 5: Forward Pass

This
1 0 0 0 0 0 0 0 0 0

E

x1

h0

0 0 0 0 0 0 0 0 0 0

h1 = 𝝈(Ux1 + Vh0 + bh)
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RNN for Text Classification

Step 5: Forward Pass

This movie

h1

x1

h0
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RNN for Text Classification

Step 5: Forward Pass

This

h1

movie
0 0 1 0 0 0 0 0 0 0

E

x2x1

h0
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RNN for Text Classification

Step 5: Forward Pass

This

h1

movie
0 0 1 0 0 0 0 0 0 0

E

x2

h2 = 𝝈(Ux2 + Vh1 + bh)

x1

h0
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RNN for Text Classification

Step 5: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5
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RNN for Text Classification

Step 5: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)
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RNN for Text Classification

Step 5: Forward Pass

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = Negative
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RNN for Text Classification

Step 6: Calculate Loss

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = NegativeActual Label 
= Positive
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RNN for Text Classification

Step 6: Calculate Loss

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = Negative

Loss
Actual Label 

= Positive
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RNN for Text Classification

Step 7: Backpropagation

This

h1

movie

x2

h2

x1

h0

is great .

x3 x4 x5

h3 h4 h5

o5 = 𝝈(Wh5 + bo)

o5 = Negative

Loss
Actual Label 

= Positive
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RNN for Text Classification

Gradient Descent: Repeat steps 5-7
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RNN for Text Classification

Step 8: Final Inference

That

h1

movie

x2

h2

x1

h0

was great .

x3 x4 x5

h3 h4 h5

o5 = Positive



Advanced RNNs: 
LSTMs and 
Attention

121
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Long Short-Term Memory (LSTMs)

The movie was good .

RNN RNN RNN RNN RNN

Positive

the movie was good .

RNN RNN RNN RNN RNN

Positive

be lying if I said

RNN RNN RNN RNN RNN

I’d

RNN

RNNs cannot handle long context
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Long Short-Term Memory (LSTMs)

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

RNN Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Input 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates
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Long Short-Term Memory (LSTMs)

LSTM Cell

xi

hi-1

Current 
input

Hidden state from the 
previous cell

hi hi
Hidden state to the 

next cell

oi
Output

ci-1 ci

Forget 
Gate

Input 
Gate

Represents long term 
information from the 

previous cell

Long term 
information to 
the next cell

RNNs cannot handle long context

Solution: Long-Term Hidden States and Gates

Output 
Gate
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Attention

RNNs and LSTMs use the information about the complete sentence 
at all times.
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Attention

RNNs and LSTMs use the information about the complete sentence 
at all times.

But is that really necessary?
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée

This should mainly requires the 
inputs ‘How was’
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée

This should mainly requires the 
input ‘your’
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée

This should mainly requires the 
input ‘day’
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée

Not all information is always needed, and ‘focusing’/‘attending’ on 
certain information more can help the language model
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Attention

A mechanism to allow neural networks to dynamically focus on 
various parts of the input based on the current task.
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Attention
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Attention

I want a piece 
with yellow color

Query
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Attention

I want a piece 
with yellow color

Query

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Green and Brown
Dark Green

Keys
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Attention

I want a piece 
with yellow color

Query

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Green and Brown
Dark Green

Keys
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Attention

Values
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Attention

How was your day

RNN RNN RNN RNN RNN

Comment

RNN

se

RNN

passe

RNN

ta

RNN

journée

This should mainly requires the 
inputs ‘How was’



Self-Attention and 
Transformers
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Self-Attention

Self-attention is assigning importance to various words in context of 
other words in the same sentence, capturing dependencies between 
different words in the sentence.
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Self-Attention
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Self-Attention

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Yellow and Red

KeysYellow and Blue

Yellow and Blue

Dark Green

Dark Green
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Self-Attention

Yellow and Green

Dark Green
Yellow and Red

Red and Green

Green and Brown

Yellow and Red Dark Green

KeysYellow and Blue

Yellow and Blue

Dark Green

and Queries
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Self-Attention

Yellow and Green

Dark Green

Yellow and Red

Red and Green

Green and Brown

Yellow and Red

Yellow and Blue

Yellow and Blue

Dark Green

Dark Green
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Self-Attention

Self-attention is assigning importance to various words in context of 
other words in the same sentence, capturing dependencies between 
different words in the sentence.
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Self-Attention
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Transformers

The movie was good .
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Transformers

The
1

movie
2

was
3

good
4

.
5
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Transformers

Embedding Layer* *Word embedding AND 
Position Embedding

The
1

movie
2

was
3

good
4

.
5
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Transformers

Embedding Layer* *Word embedding AND 
Position Embedding

The
1

movie
2

was
3

good
4

.
5

To prepare ‘key’, 
‘query’ and ‘value’ Fully Connected Layer
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Transformers

Multi-Head Self-Attention
Responsible for flow of 

information across 
words in the sentence.

Embedding Layer* *Word embedding AND 
Position Embedding

The
1

movie
2

was
3

good
4

.
5

To prepare ‘key’, 
‘query’ and ‘value’ Fully Connected Layer
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Transformers

Multi-Head Self-Attention

Multi-Head Self-Attention

…
×k

Embedding Layer* *Word embedding AND 
Position Embedding

The
1

movie
2

was
3

good
4

.
5

Fully Connected Layer

Fully Connected Layer
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Sneak Peek

● Large Language Models (LLMs) - ChatGPT, Claude, etc.
● Responsible NLP

In the next class


