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Abstract—The Next Generation Sequencing Technique (NGS) has provided an affordable and fast method for sequencing genetic
data. However, generation of whole genome sequences and extraction of relevant information from this data is still a time consuming
and computationally expensive process. With the increasing size of database in genomics everyday, we need to create tools that can
provide faster processing. In this paper, we demonstrate a novel approach to encode DNA sequences using skipgram model. Our
method is capable of successfully compressing the input feature size, while retaining comparative information required for further
processing. We test our encoding method by performing pseudo local alignment of DNA reads with respect to a reference genome. We
are able to significantly improve the speed of alignment, while achieving competitive accuracy. We provide extensive experimentation
as well theoretical insights into the performance of our method, and compare it with industry standards like BWA-MEM and BLAST.
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1 INTRODUCTION

G ENOME sequencing is figuring out the order of DNA
nucleotides (bases) Adenine, Guanine, Cytosine and

Thymine (A, G, C and T respectively) that make up an
organism’s DNA. Available methods of genome sequencing
can only handle short stretches of DNA at a time [1] and
therefore the genome is sequenced in pieces [2]. In this
method, the genome is sequenced by breaking it into small
segments, known as reads. The reads generated using these
high throughput sequencers are fragments of length 100-
900 bps with error rate of 1%-2% per read [3]. To facilitate
variant discovery with high confidence, these reads are
generated with average 30x coverage of the DNA. Due to
large number of short length reads produced with high
sampling rate, their alignment, along with error isolation,
is a computationally intensive task.

Alignment is the process by which we align the reads to
their corresponding (most likely) locations in the reference
genome [4]. Computational approaches to sequence align-
ment generally fall into two categories: global alignments
and local alignments. Calculating global alignment is a
form of global optimization that forces the alignment to
span the entire length of all query sequences. By contrast,
local alignments identify regions of similarity within long
sequences that are often widely divergent overall (Fig. 1).
Because of the computational burden, it is impossible for
non-heuristic local alignment methods to scale up with the
increasing size of DNA datasets and thus many different
heuristics have been proposed over time [5].

BWA-MEM and BLAST are two of the most popular
sequence alignment tools for raw NGS reads. BWA-MEM [6]
is based on Burrows-Wheeler Transform (BWT) algorithm
and attempts to find at each query position the longest
exact match covering the position. It uses seed-and-extend
paradigm along with BWT-index for faster search and vari-
ous provisions in the algorithm like re-seeding are focused
on recovering missed hits, which makes it one of the most
commonly used short reads sequence alignment method.

Fig. 1: Global vs Local Alignment

However, since it tries to match the complete read, BWA-
MEM does not scale well with read length. Basic Local
Alignment Search Tool (BLAST) [7] is a heuristic search
which seeks partial reads of length W that score at least
T when aligned at the query position and are then extended
in both directions in an attempt to find a locally optimal
ungapped alignment known as high scoring pair (HSP). It
is the official database search tool for the NCBI website1.

Similar to database search in genomics, another field
of research which values faster alignment over accuracy is
metagenomics [8]. The field of metagenomics is the study
of genetic material from environment without the need to
isolate individual species. It has recently emerged along
with affordable and faster genome sequencing techniques.
Metagenomics requires binning the reads to identify species
diversity [9] and prefers methods like BLAST over BWA-
MEM. With the increasing size of databases in genomics, it
is getting more and more important to develop faster search
tools to do rapid classification in lieu of accuracy loss.

The field of genomics enjoys a level of parallelism with
common computer vision (CV) problems like image clas-
sification, object detection etc. and is also connected to
natural language processing (NLP) if one views DNA as
a string of alphabets. Due to the success of deep learning
in CV and NLP and their abstract connections with this

1. https://blast.ncbi.nlm.nih.gov/Blast.cgi

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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field, a great deal of work has been done in recent years to
incorporate these methods, more specifically convolutional
neural networks (CNN), in the field of Bioinformatics [10]–
[16]. However, most of these approaches use primitive one
hot vector encoding to encode nucleotides into vector rep-
resentations. These encodings have evident limitations, as
they do not translate any sequence related information (bi-
nucleotide, tri-nucleotide relationships etc.). Moreover the
size of input is increased by at least four folds (since one
hot encodings map to a vector of vocabulary size) which
inadvertly increase the processing time.

In this paper, we propose a novel encoding method,
namely Nucl2Vec, to create compact representations for both
the sequenced reads and the reference DNA and further use
them to do local alignment. Our encoding method has the
following key features:
• Highly compressed mathematical representations which

facilitates faster processing.
• Distributed nature of the encodings which provides them

comparative value responsible for alignment accuracy.
• Encodings trained using deep learning which means they

can learn latent features that cannot be manually assigned.
• Length of encoded read independent of the actual read

length, making our method robust to varying read sizes.
• Encodings trained in an unsupervised manner which

allows them to adapt easily to any alignment algorithm
(we use 1NN in this paper).

We use different reference DNAs and corresponding
sets of Illumina reads for evaluation. Our approach is able
to provide compact yet accurate representation of the se-
quenced reads which are then matched with the reference
for faster local alignment. We compare our performance,
both in terms of alignment accuracy and speed, with two
commonly used alignment tools BWA-MEM and BLAST. We
also provide theoretical insights into the alignment speed of
various methods.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III formally defines our
framework to perform local alignment. Section IV presents
our proposed encoding method along with training details.
Section V presents an extensive analysis of our algorithm’s
performance and Section VI concludes the paper.

2 RELATED WORK

Distributed vector representation for creating word em-
beddings (commonly known as Word2Vec) was first made
popular by Mikolov et al. [17], [18]. Since then, the creation
of pre-trained word embedding have been improved upon
repeatedly in NLP [19]. The core idea behind this is two fold.
One, these embeddings are believed to be a good semantic
representation of the word and two, they are pre-trained
and are thus easily adaptable across various models/tasks.

Deep learning methods in genomics have been gaining
popularity in recent times with a great deal of work being
done in a try to replace the classical benchmarks or provide
a better analysis of the data at hand [10]–[16]. Although lim-
ited, some studies do exist on distributed vector represen-
tation in genomics [20]–[22]. BioVec and ProtVec [20] uses
skipgram based model to represent protein sequences. Their
work is focused towards classification and encodes long

sequences of protein into large encoding vectors. Dna2Vec
[21] uses encoding similar to Word2Vec. But instead of com-
pressing information, they expanded k-mers (3 ≤ k ≤ 8)
into continuous vectors of 100 dimensions, purely for the
purpose of detailed comparative analysis.

Aoki and Sakakibara [22] have used skipgram based
encoding to do alignment and generate motif of non-coding
regions of RNA. They have encoded 4-mers into 12 length
dimensional vector. They provide an encoding which is
trained with the complete pipeline and thus is bound to
that particular task and model used, and the length of their
encoding depends on the read length which makes it more
computationally expensive to handle longer reads. We on
the other hand train encodings separately in an unsuper-
vised manner, which allows them to be used freely for any
ML model. We also provide fixed length encodings for reads
of varying length. Aoki and Sakakibara [22] decreased the
length of encoding dimension as compared to Dna2Vec [21]
but we aim to further compress the encoding length to
substantially decrease the computational expenses.

3 FRAMEWORK

In order to evaluate the performance of our proposed encod-
ing method as well as perform several ablation studies, we
create a framework using 1-nearest neighbour (1NN) algo-
rithm to do pseudo-alignment. Broadly, our framework can
be divided into 2 separate parts, 1) Encoding the reference
DNA and creating a 1NN tree. Needs to be done only once
for every reference DNA. 2) Encoding the input read and
finding the best match in the reference 1NN tree.

Nearest Neighbors algorithm is one of the most com-
monly used classification algorithms. 1NN creates an index
tree from all available data and uses this tree to predict the
clusters of a new sample point based on some similarity
measure. It is a non-parametric technique, which means
that it does not make any assumptions on the underlying
data distribution [23]. The algorithm is known to work well
with large datasets, however carries with it the curse of
dimensionality, which means the data sparseness increases
exponentially with the feature dimension. This further rein-
states the requirement of a highly efficient feature encoding.

To create the 1NN tree, we first extract all kmers (a se-
quence of nucleotides of length ’k’) present in the reference
DNA, for a pre-defined value of k. We then encode these
kmers using Nucl2Vec, which along with their alignment
position, are used as ”training data” for 1NN algorithm. The
encoded kmers are used to prepare the 1NN tree and vector
L2 distance is used as a measure of similarity, thus hypothe-
sizing that similar kmers will have similar encoding. While
the algorithm is usually considered computationally heavy,
with appropriate optimization and pre-processing we can
reduce the computation burden of the inference process.
We simply use the K-Nearest Neighbor classifier (with K=1)
provided by sklearn library in Python [24].

Next we encode the reads using Nucl2Vec and then use
these encodings to search in the reference 1NN Tree for
the best possible match. Due to the approximate nature of
our algorithm, we actually create multiple encodings for
a single read and try to match each of them individually
in the 1NN tree. The match with the least L2 similarity
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distance is considered the correct alignment position for
the read. However, if this minimum similarity distance is
greater than some pre-decided threshold, we consider that
the read cannot be aligned anywhere on the reference DNA
and thus is given the alignment value ’-1’. Refer to Algo 1
for the pseudocode.

Algorithm 1 Framework for Local Alignment
procedure PROCESSREFERENCE(reference) . To create 1NN Tree

allEncodings← []
for i from 0 to len(reference)-k with jump of ’1’ do

currKmer ← reference[i:i+k]
enc← ENCODEKMER(currKmer)
allEncodings.append(enc)

referenceTree← Create 1NN Tree using allEncodings and their index
return referenceTree

procedure FINALALIGNMENT(reference, readsArray, thresholdDis)
reference1NNTree← PROCESSREFERENCE(reference)
alignment← []
for read in readsArray do

Encodings← ENCODEREAD(read)
EncodingsPos← Alignment for Encodings from reference1NNTree
EncodingsDis← Corresponding L2 Distance
optDis←Minimum(EncodingsDis)
optPos← Corresponding alignment position
if optDis ≤ thresholdDis then

alignment.append(optPos)
else

alignment.append(-1)
return alignment

4 NUCL2VEC ENCODINGS

In this section, we define our skipgram-based Nucl2Vec en-
codings. We first focus on the details of the training method
that we use to create the base embeddings, along with some
qualitative analysis. We then use these embeddings to create
encoding representations for both the input reads as well
as the reference DNA. Finally, we combine our encoding
method with the framework setup to define the complete
pseudo-alignment method.

4.1 Skipgram training
An essential feature for any good embedding would be to
contain not only the information regarding the composition
of the pmer but also its interactions with other pmers. We
use skipgram to get a distributed vector representation for
every pmer, encoding similarity and composition. Skipgram
has been typically used as a feature engineering technique
in NLP. In our case, we will be training the skipgram model
on pmers. Every permutation of nucleotides forming a pmer
will be considered a word in our vocabulary. This will make
the vocabulary size of our corpus = 4p.

It should be noted that skipgram in NLP is sometimes
used as the initial part of a bigger pipeline (for example, sen-
timent analysis, machine translation etc.), and the complete
pipeline is trained end-to-end. Similar method is used by
Aoki and Sakakibara [22] to train their encodings. However,
in our case, we use skipgram in an unsupervised manner to
first generate pmer embeddings (based of their similarity as
described below) and then use these to create encodings for
alignment using 1-Nearest Neighbors. Thus, the training of
these embeddings is not directly connected to the alignment
process and vice-versa. This gives us the freedom to use our
embeddings with any ML algorithm for alignment.

The input to the skipgram model is a corpus of sentences
and the underlying assumption is that words used together
in the same sentence tend to have more similarity. So, to
define similarity between pmers, we use the number of
edits, or edit distance. Two pmers P and P’ are at an edit
distance of ’1’ if, (i) On substituting a nucleotide in P, we
obtain P’, (ii) On inserting a nucleotide in P followed by
deletion from the right or left extreme (to maintain pmer
length), we obtain P’, or (iii) On deleting a nucleotide in P
followed by insertion at the right or left extreme (to maintain
pmer length), we obtain P’. For more details refer to Fig 2.

Fig. 2: Types of Edits

Now that we have defined a metric of similarity between
pmers, we create ’sentences’ for training of the skipgram
model. For every pmer in our vocabulary, we collect all
pmers at edit distance ’1’ from this main pmer and place
them around it. The pmers are treated as words, and thus
the sentences formed are datapoints for training Nucl2Vec
base embeddings. Refer to Algo 2 for the pseudocode.

Algorithm 2 Nucl2Vec Training
function NEARBYSET(inputPmer) . Function to generate all pmers at an edit
distance ’1’ from the inputPmer

for every location lo in the inputPmer do
bp← [’A’, ’C’, ’T’, ’G’]
temP1, temP2, temP3, temP4, temP5← Copies of inputPmer
for nucleotide b in bp do

substitutePmer ← temP1.replaceWith(ele = b, loc = lo)
insertionPmerRight← temP2.insert(ele = b, loc = lo)[:-1]
insertionPmerLeft← temP3.insert(ele = b, loc = lo)[1:]
deletionPmerRight← temP4.delete(loc = lo) + ’b’
deletionPmerLeft← ’b’ + temP5.delete(loc = lo)
Insert pmers formed above into an array

return array of all the Pmers formed

function CREATESENTENCE(inputPmer) . Function to create training corpus
sentence for the given inputPmer

pmerArray ← NEARBYSET(inputPmer)
pmerArray.insert(ele = inputPmer, loc = len(pmerArray)/2 )
finalSentence← Join all the words in pmerArray to create a sentence
return finalSentence

procedure ENCODINGTRAINING(p) . Create the training corpus
allPmers← All possible permutations of nucleotides of length ’p’
trainingData← []
for pmer in allPmers do

pmerSentence← CREATESENTENCE(pmer)
trainingData.append(pmerSentence)

nucl2vecEmbedding ← Skipgram(trainingData)
return nucl2vecEmbedding

Once the sentence corpus is created in the aforemen-
tioned manner, we train the skipgram model using heirar-
chial softmax, with window size equal to the number of
words in the sentence. Due to the smaller corpus size (4p),
we are able to train our skipgram model efficiently without
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any additional modifications like negative sampling, sub-
sampling or dynamic context windows.

4.2 Qualitative Analysis of Base Embeddings
Skipgram training is probabilistic and thus every time we
train on the complete vocabulary, we will get different em-
beddings for the pmers. However, the property that pmers
which have similar embeddings will have smaller edit dis-
tance is maintained. We consider one such training run (with
p=4 and embedding dimension=1) to do a qualitative com-
parison of few 4-mer embeddings as shown in Fig 3. Note
that this is not a quantitative representation of the actual
behavior of these embeddings and the examples shown here
are handpicked to emphasize certain observations.

Fig. 3: Comparing a few random embeddings

We can see the close proximity of 4-mers with small edit
distance, like AATG and AATC (edit distance = 1), CGAC
and GACT (edit distance = 1). Similarly, 4-mers like AAGG
and GACC (edit distance = 3), AAGG and CGAT (edit
distance = 3) are sufficiently far from each other. However,
there are also a few anomalies present : AATG and AAGG
(edit distance = 1) are not nearby while CGTT and GACC
(edit distance = 3) are in close proximity. This behavior is
expected as we are trying to reduce the feature space, and is
exacerbated when we force extreme compression.

Compressing pmers into smaller dimensions provides a
great boost in the computation speed. Yet there is also a clear
disadvantage present in extreme compression to create these
embeddings, as can be noticed from the anomalies observed
above. However, by stacking multiple pmers together, we
can reduce the probability of a mismatch. For example, let
us say that the probability of an incorrect match of pmers
under such an embedding is pr. Then the probability of
an incorrect match of pmers stacked together decreases
to pr*pr for 2 pmers, pr*pr*pr for 3 pmers and so on. In
conclusion, the more number of pmers are stacked together
for matching, the lesser chance there is of an incorrect match.
An experimental analysis of the effect of the number of
pmers on accuracy is done later in this paper.

For the rest of the paper, pmers will denote nucleotide
sequences used in Nucl2Vec training and ’c’ will repre-
sent the number of such pmers stacked together. Thus,
cpmers (length = c*p) will represent the complete nucleotide
sequences involved during the alignment. Note that the
term kmers used in the previous section to define all the
nucleotide sequences extracted from the reference DNA is
the same as the term cpmers defined here (i.e. k=c*p).

4.3 Nucl2Vec Encodings
To create encodings for the reference DNA, we first extract
all cpmers present in the reference DNA. We then encode

them using the Nucl2Vec embeddings that we have learned.
A cpmer can be encoded by encoding every stacked pmer
present in it separately and then stacking the results back
together. For example, if the Nucl2Vec learned embeddings
for 4-mers (p=4), then to encode a 16-mer (c=4 and p=4), we
first divide it into 4-mers and then encode them separately.

For encoding a read, we take 4 cpmers : one each from
the front and end, and two from the center of the read.
This way, we only consider a segment of the read instead
of considering the whole read sequence to create encodings.
By using this heuristic, we are improving the performance of
1NN by reducing the size of search space. The idea is based
on the intuition of how we solve jigsaw puzzles. While
joining two pieces of a jigsaw puzzle, we emphasize more
on how the corners fit rather than the content. Similarly, for
finding correct alignments for the reads, we only consider
small segments of the read (see Fig 4) and hypothesize that
the rest of the read will match at the same location.

We take two contiguous regions from the center instead
of evenly spaced regions because of the behavior of widely
used high throughput genome sequencing methods. These
methods are based on a common principle of extending a
smaller piece of DNA by attaching nucleotides one at a time
and tagging it with fluorescent dyes [25]. These methods
are known to have more error prone corners compared
to the center, as the DNA strands floating in the solution
might get broken from the corner and reattached to other
floating strands. Thus when aligning reads generated using
these sequencing methods, we choose more regions from
the center for better accuracy. Refer to Algo 3 for details.

Algorithm 3 Creating Final Encodings
function ENCODEKMER(inputKmer) . Function to encode the inputKmer

finalEncoding ← []
for i from 0 to len(inputKmer)-p with jump of ’p’ do

currPmer ← inputKmer[i:i+p]
enc← nucl2vecEmbedding(currPmer)
finalEncoding.extend(enc)

return finalEncoding

function ENCODEREAD(read)
front← ENCODEKMER(read[0:c*p])
end← ENCODEKMER(read[len(read)-c*p:len(read)])
centerleft← ENCODEKMER(read[len(read)/2-c*p:len(read)/2])
centerright← ENCODEKMER(read[len(read)/2:len(read)/2+c*p])
return [front, end, centerleft, centerright]

4.4 Complete Model
Our final proposed model takes an existing reference se-
quence and a set of NGS reads (to be aligned) as input
and outputs an integer value for each read representing the
index at which the read aligns the best or -1 if the read does
not align properly anywhere. Algorithms 1, 2, 3 and Fig 5
describe the steps executed to obtain the final output.

Step 1 : We use edit distance as previously described to
represent proximity between two pmers and learn Nucl2Vec
base embeddings. Generation of these embeddings is a one
time process.

Step 2 : The pre-processing involves creating encodings
of every cpmer present in the reference DNA and building
a 1-Nearest Neighbor tree.

Step 3 : Once the pre-processing of reference DNA is
done, we proceed to align the reads. For each read, cp-
mers from the front, end and two cpmers from the center
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Fig. 4: Matching only a segment of the read (represented by bold nucleotides). The rest of the read seems to match at the
same location too.

(center left and center right) are taken and encoded. These
are matched in 1-nearest neighbors tree which outputs the
match distance and predicted alignment location. Matches
which have the match distance less than some threshold are
considered, for all others we output ’-1’ (unaligned).

Fig. 5: Complete Pipeline Flowchart

5 EVALUATION

We now evaluate the performance of our proposed align-
ment method. We first describe the experiment settings,
evaluation metrics and the details of the dataset used. For
hyperparameter search, a small subset of the dataset is used.
We discuss the theoretical bounds for alignment time of our
algorithm as well as of BWA-MEM and BLAST. Finally, we
present experimental results to illustrate the performance of
our approach under diverse settings and compare it with
commonly used baselines BWA-MEM and BLAST.

5.1 Experiment setting and evaluation metrics

Pseudo local alignment of a query read is defined as the
location in reference genome where query read aligns the
best. A single read however can align at multiple locations
in the reference. To calculate the quality of alignment, we
use Needlemen Wunsch (NW) algorithm [26] to generate
alignment scores. These scores are normalised by the read
length to keep the final score between 0 and 1.

We define the problem statement as follows. The input to
the model is a reference DNA and a set of reads. The output
of the model is the alignment position li for each read. To
score the alignment quality, we calculate the normalised NW

score nwi for every read which is aligned. The final accuracy
of the model can be judged using an indicator function as,

Accuracy =
1

m

m∑
i=1

1(nwi≥nwthr), (1)

where m is the total number of reads aligned and nwthr

is the alignment score threshold. While the evaluation seems
like a binary score task, shifting the alignment a few position
does not substantially hurt the NW score.

The above metric however does not consider reads that
are left unaligned by the proposed solution. To better un-
derstand our alignment quality and analyse the unaligned
reads, we also do a detailed comparison of our alignment
predictions with BWA-MEM. We further analyse the mis-
match instances using NW alignment scores at locations
predicted by our model and BWA-MEM.

To test our proposed model, we have obtained data from
the NCBI website for 3 different bacteria, namely Listeria
Monocytogenes, Salmonella Enterica and Escherichia Coli.
For each reference genome of bacteria we have experi-
mented with 3 randomly chosen Illumina NGS reads sets
[27]. Details regarding the reference genome and the reads
are mentioned in Table 5 and 6.

5.2 Model Parameter Setting
There are a number of hyperparameters on which our model
can be optimized. This includes the length of pmers and
encoding dimension for the Nucl2Vec training, as well as
the value of ’c’ and number of cpmers used for creating final
encodings. Various experiments have been performed with
Escherichia Coli DNA and a subset of the corresponding
Illumina NGS reads set to explore these hyperparameters.

TABLE 1: Performance comparison across varying
hyperparameters for base embeddings.

Parameter Setting Performance
p encoding-dimension Accuracy (%) Time per read (ms)
3 1 60.12 0.154
3 2 61.52 0.393
4 1 78.23 0.127
4 2 78.14 0.465
5 1 75.80 0.129
5 2 75.48 0.353
6 1 73.16 0.132
6 2 74.89 0.427

For the same value of encoding dimension, a higher
value of ’p’ means more number of nucleotides are included
in the cpmer segment that we use for alignment. However,
this also means that the anomalies between the encodings
become more and more evident. Thus a balance between
the two needs to be maintained to achieve the best accuracy.
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From Table 1, we can see that encoding 4-mers seems to be
the correct choice for the best accuracy. Also, we see that the
variation in computation time dependents significantly on
the encoding dimension. Since the accuracy is almost similar
for both, we should prefer encoding in 1-dimension for
faster prediction speed. We will use 4-mers with encoding
dimension 1 for further analysis.

TABLE 2: Performance comparison across varying values
of c.

Parameter Setting Performance
cp (p=4) Accuracy (%) Time per read (ms)

8 0.1 0.031
12 58.47 0.051
16 78.23 0.127
24 77.91 0.511
32 78.02 2.171

Next, we experiment with different values of ’c*p’ (for
p=4) and reported the accuracy and prediction time against
the length of segment used. From Table 2, it can be observed
for the given configuration that the maximum accuracy is
achieved at cp = 16 (c=4), after which it does not increase
but instead decreases (this may happen due to the curse
of dimensionality). Also we can see from Table 2 that the
prediction time increases exponentially, as expected. Thus,
cp=16 (c=4) seems to be the best choice for segment length.

TABLE 3: Performance comparison across different region
choices.

Parameter Setting Performance
Matching cpmers Accuracy (%) Time per read (ms)

Front 78.23 0.127
+ End 89.44 0.252

+ Left Center 93.22 0.394
+ Right Center 93.49 0.513

Since we are using 16-mer segments for alignment, we
have to determine how many and from where these seg-
ments should be taken. The possibilities include the front
segment, the end segment, the left of the center and the
right of the center. We experimented with the combinations
of these and the accuracy and prediction time are reported in
Table 3. As expected, the prediction time increases linearly
with the number of segments, as increasing the number of
segments means doing the 1NN tree search that many times.
We can also note that the accuracy starts saturating as we
increase the number of segments used. Since there is an
increase in accuracy between 3 segments and 4 segments,
we will use 4 segments for the future experiments.

The final experiment is done on complete dataset and
resukts are compared with baseline methods like BWA-
MEM and BLAST. The value of hyper-parameters used is
shown in Table 4.

Hyper-Parameter Value
p 4
cp 16

encoding-dimension 1
cpmers locations from Front, End,

each read Left Center and Right Center

TABLE 4: Model Hyper-Parameters

5.3 Alignment time : Theoretical bounds
In this section, we do a theoretical analysis of various
alignment methods to better understand why our proposed
solution is faster than the existing solutions. We first start
with BWA-MEM, which is based on BWT-index creation.
Since BWA-MEM tries to match the entire read, its theoreti-
cal time complexity for searching a read alignment is O(|w|),
where |w| represents the read length. In tasks that require
searching a single read through a large database, BWA-
MEM performs poorly as it takes significantly large amount
of time. However, in tasks which require reconstructing
genome sequences from a large set of reads, BWA-MEM is a
favorable choice as it provides good alignment accuracy.

BLAST on the other hand has a theoretical time com-
plexity of O(|w| ∗ n), where |w| is same as above and n
represents the reference DNA length. However, due to it’s
heuristic nature the actual performance is way faster than its
theoretical bound. This makes BLAST suitable for searching
through large databases, but its heuristic nature makes it a
poor choice for alignment of large sets of reads.

Our proposed solution uses KD-tree for 1-nearest neigh-
bour and due to the very small dimension of search vector,
we can achieve time complexity of O(s ∗ logn), where n
denotes the length of the reference DNA and s denotes
the number of different cpmers we use for alignment. This
gives us two major advantages. Firstly, while the alignment
speed for both BWA-MEM and BLAST depend on the read
length, our alignment speed depends only on the length
of the reference DNA. Secondly, since the time complexity
of our algorithm depends on logarithmic progression and
the length of DNA is usually of the order of millions, the
variations in DNA length have no practical effect on the
alignment time performance of our algorithm.

Thus, our proposed solution provides an almost constant
alignment speed independent of the read length as well
as the reference DNA length. This gives our algorithm a
significant edge over other solutions in extreme cases, for
example with unusually long read or reference. Since we try
to encode reads of all length into same size vector, longer
reads might get a slightly less accurate representation as
compared to shorter reads, which can hurt our accuracy.
However, the tradeoff between speed and accuracy is in our
favor, with more detailed experiments provided in the next
subsection.

5.4 Accuracy and Time Analysis
We do a accuracy as well alignment time comparison for
BWA-MEM, BLAST and Nucl2Vec and provide the results
in Table 5. The reference DNA as well as the set of reads
used have a varying range of properties in order to fully
explore the capabilities of our model. For example, for
Listeria Monocytogenes, the read set SRR9063775 (row 2)
contains extremely long reads with a average length of 241.
On the other hand, the read set SRR9066644 (row 3) for the
same reference DNA contains smaller reads with a average
length of 138, but the total number of reads in the set are
significantly more than any other sets in our experiments.

We do not go into a detailed discussion of the com-
putational cost of index generation here as it is done just
once for every reference DNA and is comparable for all
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TABLE 5: Accuracy and Time comparison of BWA-MEM, BLAST and Nucl2Vec

BWA-MEM BLAST Nucl2Vec
Bacteria Illumina Read Sets Av. read length No. of Reads Accuracy Time Accuracy Time Accuracy Time

(bp) (%) (sec) (%) (sec) (%) (sec)
Listeria
Monocytogenes
(2.9M bp)

SRR9062615 234 425.0k 91.74 145 88.29 124 96.02 57
SRR9063775 241 281.8k 86.64 172 80.18 78 90.8 39
SRR9066644 138 1.8M 96.92 304 94.55 456 93.85 224

Salmonella
Enterica (4.8M
bp)

SRR9067199 200 422.5k 96.4 107 90.81 128 94.01 52
SRR9067207 218 693.9k 95.91 273 85.13 256 91.56 87
SRR9067279 217 573.9k 97.15 162 93.45 173 91.6 72

Escherichia
Coli (4.6M bp)

SRR9067016 238 516.9k 93.34 226 88.85 161 90.15 76
SRR9067573 199 534.9k 95.66 164 93.95 175 86.98 68
SRR9067633 241 665.2k 93.57 289 90.41 248 89.43 88

three algorithms. Also, since the 1NN tree used here is a
replaceable framework that we use to show the importance
of our encodings, we believe that a discussion into the
details of index generation is not in the scope of this paper.

We first explore the accuracy of various methods. While
there are certain exceptions present, in general it can be seen
that BWA-MEM performs significantly better in terms of
accuracy, while both BLAST and Nucl2Vec deliver similar
performances with Nucl2Vec being slightly better. If we cal-
culate a weighted average of all the performances provided
in Table 5, with the number of reads being the weight, we
get an average accurcay of 95.13% for BWA-MEM, 90.92%
for BLAST and 91.98% for Nucl2Vec. Although the variation
of accuracy with read length is sometimes haphazard, there
is an internal trend present that can be seen from the
table. Both BLAST and Nucl2Vec have more degradation in
performance for longer reads as compared to shorter reads,
which is expected since both of these methods use partial
read matching.

Another measure of efficiency for these algorithms is the
amount of time it takes to perform the alignment, which
has been the focus of our work. Table 5 also provides
time analysis for all the three algorithm. It can be noticed
that on average our model (Nucl2Vec) is 2-3 times faster
as compared to BLAST and BWA-MEM. We can notice
that the time taken for BWA-MEM increase for sets with
longer average read length, due to the reasons detailed in
the previous subsection. Similarly, time taken for longer
reference DNA is more for BLAST as compared to shorter
reference DNA. However, as expected, Nucl2Vec provides
an almost constant alignment time per read, independent of
the average read length or reference DNA length.

5.5 Validation of results using BWA-MEM alignments

The accuracy comparison done in Table 5 is limited to reads
which get aligned. However, it does not take into account
the reads which are left unaligned by various algorithms.
Also, while a read might get aligned by all algorithms,
there can be discrepancy on the quality of alignment due
to mismatch of alignment location provided by different
algorithms. Thus, doing a comparative analysis of the align-
ments provided by our method with BWA-MEM is also an
interesting point of study. Following cases were observed
during analysis.

1) Case 1 : Our results do not match BWA-MEM results,
but the normalised NW scores of both alignments are
comparable (difference ≤ 0.1). This might be due to

the possibility of a read correctly aligning at multiple
locations in the reference.

2) Case 2 : BWA predicted the read to be unaligned, but
our model found an alignment with acceptable NW
score (≥ 0.7).

3) Case 3 : Our predicted alignment is a small offset from
the correct alignment position and our NW score is
acceptable, but lower than the score at BWA predicted
location. This may be due to different interpretation
of best local alignment by CIGAR(BWA) and by L2
distance(1NN) (see Fig 6)

Fig. 6: Predicted Location mismatch with BWA-MEM

The errors from third case can be corrected by doing
NW score check in the local neighborhood of our predicted
location as shown in Fig 6. Since NW takes considerable
amount of computation, this has not been included in our
final model. The results on data set generated by our model
were divided into following six categories

1) Category 1 : Predicted Location same as BWA location.
2) Category 2 : BWA shows no match but Nucl2Vec pre-

dicted location with acceptable NW score (≥ 0.7).
3) Category 3 : BWA location and Nucl2Vec location differ,

and the Nucl2Vec location NW score is low (< 0.7).
4) Category 4 : BWA shows no match and Nucl2Vec pre-

dicted location with a low NW score (< 0.7).
5) Category 5 : BWA location and Nucl2Vec location differ,

however their NW scores are comparable (difference ≤
0.1).

6) Category 6 : Nucl2Vec predicted location is -1, but BWA
output location with alignment.

The accuracy comparison of our model against BWA-
MEM is shown in Table 6. Category 1, 2 and 5 comprise the
correct prediction percentage and the rest three categories
amount to error percentage. It can be seen that, on an
average, around 91-92% of our model alignment match with
the alignments provided by BWA-MEM, and after category
2 and 5 results are included our model accuracy reaches
around 95-96%. With this accuracy our model may be used
for pseudo-alignment of NGS reads.
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TABLE 6: Accuracy Of Nucl2Vec model against BWA-MEM

Bacteria Illumina Read Sets Av. read length Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Accuracy
(bp) (%) (%) (%) (%) (%) (%) (1+2+5)

Listeria
Monocytogenes
(2.9M bp)

SRR9062615 234 92.69 0.76 1.57 0.49 2.09 2.4 95.54
SRR9063775 241 88.2 1.27 3.27 0.87 3.64 6.02 93.11
SRR9066644 138 92.49 1.06 1.92 0.57 1.78 2.18 95.33

Salmonella
Enterica (4.8M
bp)

SRR9067199 200 93.82 1.17 0.29 0.74 1.27 2.78 95.26
SRR9067207 218 91.85 0.83 3.23 0.51 1.02 2.56 93.7
SRR9067279 217 93.71 1.42 0.55 0.62 1.25 2.45 96.38

Escherichia
Coli (4.6M bp)

SRR9067016 238 93.58 0.54 0.64 0.98 1.37 2.89 95.49
SRR9067573 199 91.67 1.82 0.69 1.07 1.71 3.04 95.2
SRR9067633 241 93.42 1.65 1.55 0.96 0.95 1.47 96.02

6 CHALLENGES AND FUTURE WORK

The aim of the paper is to provide a Machine Learning based
method of generating features out of nucleotide sequences
that represent more information than the traditional one-
hot vector encodings while compressing the total size of
the input data. We use our encodings to perform local
alignment and compare its performance against existing
industry standards. We found that our algorithm performs
significantly faster while maintaining comparable accuracy.
The Nucl2Vec embeddings have the capabilities of being
used in other tasks as well as with other ML algorithms,
as it is a method of feature representation.

The embeddings used in this paper were trained solely
on mathematical intuitions. However, substitutions of cer-
tain nucleotide pairs might have more biological preference
than others and this information might be used to influ-
ence pmer proximity while training Nucl2Vec embeddings.
Adding such biological insights might increase the accuracy
even further, and is a promising direction of future research.
Also, we use a simple framework setup to do local align-
ment using these encodings, and it will be interesting to test
the transfer learning capabilities of our encodings and see
how well they work with other ML algorithms as well as in
variety of tasks other than alignment.
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