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Abstract

As large language models (LLMs) become increasingly inte-
grated into daily life, privacy concerns are on the rise. Driven
by the appeal of convenient, universal solutions, current prac-
tices reflect a drift toward a one-size-fits-all approach to pri-
vacy. Unfortunately, we argue that a unified framework for
prompt privacy is elusive and can instead mislead, creating
even greater risk due to a false sense of safety. We identify
five desirable properties of an effective privacy framework
for prompts, namely protection guarantees, performance, effi-
ciency, domain adaptability, and user accessibility, and high-
light that existing frameworks, such as sanitization, differen-
tial privacy, cryptography, and contextual integrity, only sat-
isfy a subset of these properties. Beyond individual frame-
works, we find underlying tensions between these properties
that preclude the development of a unified framework. We
recommend two critical paths forward: emphasizing context-
specific and application-specific evaluation of privacy frame-
works, and fostering user awareness and privacy literacy.

1 Introduction

Large language models (LLMs) have become increasingly
embedded in our daily workflows, ranging from coding as-
sistants and legal advisors to medical support tools and more
(Zhao et al. 2025; Minaee et al. 2025; Chang et al. 2024).
With their growing capabilities, LLMs have fundamentally
changed how users interact with third-party commercial sys-
tems (Mireshghallah et al. 2024a; Touvron et al. 2023). This
shift has led to a significant increase in the amount of sensi-
tive information users share, whether due to the personalized
and open-ended nature of conversations, better interactivity,
or simply a general lack of Al literacy, particularly regard-
ing how companies might collect and use their personal data
(More, Ganesh, and Farnadi 2024; Carlini et al. 2021; Zhang
et al. 2024b; Mireshghallah et al. 2024a).

Unsurprisingly, concerns around privacy in LLMs are on
the rise (Du et al. 2025), both in academic research and in
the design of tools for end users. Several solutions have been
adopted from the existing privacy literature, including tech-
niques like anonymization, differential privacy, and cryptog-
raphy (Zhang et al. 2025; Hong et al. 2024; Shao et al. 2025;
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Figure 1: Five desirable properties of a prompt privacy
framework (§ 2), coverage of various existing frameworks
in the literature (§ 4, 5, 6), and several non-trivial underly-
ing tensions between these properties (§ 8).

Du et al. 2023; Chen et al. 2023), while novel frameworks,
such as contextual integrity (Mireshghallah et al. 2024b;
Nissenbaum 2009), have also been proposed. The goal is
often a generalizable, user-facing, plug-and-play framework
that can be seamlessly integrated into any chatbot system.

Drift towards a Unified Framework: This evolution in
prompt privacy reflects a broader trend toward unified so-
lutions. Promises like “Secure your Al. Everywhere it mat-
ters” (pro 2025) or “Privacy firewall for ChatGPT prompts”
(aimeetsprivacy 2025), without any explicit context, position
these solutions as universal safeguards against all privacy
risks. The diverse range of domains in which users engage
with LLMs, ranging from everyday productivity tasks to fi-
nancial, medical, or legal contexts, further compounds this
trend. Consequently, users seek a universal solution to their
privacy concerns. However, a one-size-fits-all approach to
prompt privacy is deeply flawed.

Underlying Tensions in Prompt Privacy: We identify
five key properties for prompt privacy (see Figure 1): three
quantifiable (protection guarantees (Tong et al. 2025; Xin
et al. 2025), performance (Sun et al. 2024; Chen et al.
2023), and efficiency (Edemacu and Wu 2025; Gim, Li,
and Zhong 2024)) and two qualitative (domain adaptabil-
ity (Mireshghallah et al. 2024b; Brown et al. 2022) and
user accessibility (Zhang et al. 2025)). We find existing
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Figure 2: Prompt Privacy Pipeline. The user interacts with a privacy tool/transform before their query is sent to the LLM. All
privacy interventions occur within a local trusted environment, ensuring that only the protected query is transmitted. We assume
both the LLM and the communication channel can have malicious actors. The final reconstructed output is compared against
the hypothetical output of the original query to make sure the LLM utility is preserved.

frameworks typically address only two of the three quan-
tifiable properties, while also dealing with a trade-off be-
tween adaptability and accessibility. Digging deeper, we un-
cover two underlying tensions: first, the gap between natural
language semantics and representation space, which com-
plicates balancing protection, performance, and efficiency;
and second, the wide range of LLM use cases, which makes
adaptable frameworks capable of handling various privacy
requirements inherently less accessible to everyday users.
We structure our argument as follows:

* We first define the scope of our discussion, and intro-
duce five desirable properties of a privacy framework for
prompts: protection guarantees, performance, efficiency,
domain adaptability, and user accessibility (§ 2).

* We then examine four popular categories of privacy
frameworks for prompts, i.e., sanitization (§ 4), differen-
tial privacy (§ 5), cryptography (§ 6), and contextual in-
tegrity (§ 7), highlighting the limitations of each approach.

* Moving beyond individual frameworks, we identify sev-
eral underlying tensions between the desired properties
(§ 8). These tensions represent non-trivial challenges that
will likely persist even in future developments.

* We conclude with two key recommendations: context-
specific evaluations to document the strengths and limi-
tations of various frameworks across contexts, and better
privacy literacy and awareness for the end users to help
them choose and adopt the appropriate tool (§ 9).

2 Anatomy of a Prompt Privacy Framework

We start by defining a prompt privacy pipeline to establish
the scope of our discussion. We then identify five desirable
properties of a good privacy framework.

2.1 Prompt Privacy Pipeline

To establish a consistent terminology and mark the scope
of our discussion, we present a prompt privacy pipeline in
Figure 2. The pipeline contains the following components,

* User: The individual or entity interacting with the LLM.

* Original Query: The original input the user intends to
send to the LLM. This includes both the language prompt
and any auxiliary content such as documents, code, etc.

e Privacy Tool/Transform: The privacy tool responsible
for protecting the original query and removing sensitive
information, producing a protected query. In some cases,
it also post-processes the LLM’s response to reconstruct
or recontextualize it before returning it to the user.

* Protected Query: The sanitized query generated by the
privacy tool/transform.

e LLM: The target LLM to process the query.

* Protected Output: The response generated by the LLM
when given the protected query as input.

* Reconstructed Output: The final response presented to
the user, which may be the protected output or a refined
version of it, depending on the privacy tool/transform.

* Hypothetical Original Output: The response generated
by the LLM when given the original query as input.

¢ Trusted Local Environment: The environment that the
user trusts. This need not be just the user’s device; for ex-
ample, if a trusted party, say the bank, intermediates ac-
cess to an LLM, the trusted environment includes both the
user’s device and infrastructure under the bank’s control.

¢ Untrusted Communication Channel and LLM: The
communication channel through which the query is trans-
mitted and the LLM itself, both assumed not to be trusted.

2.2 Desirable Properties of a Privacy Framework

We identify key properties that collectively determine the ef-
fectiveness and practical viability of a prompt privacy frame-
work. These are not intended to be an exhaustive list, but
rather a set of properties desirable for a unified framework.

Quantifiable Properties We start by defining three quan-
tifiable properties fundamental to any privacy framework.



Protection Guarantees. Central to a privacy framework is
its ability to protect against information leakage, i.e., lim-
iting the information that an adversary can extract through
the protected query. Depending on the context, the threat
model, and the information available to the attacker, differ-
ent strengths and nature of privacy protection might be desir-
able (Tong et al. 2025; Papadopoulou et al. 2022; Xin et al.
2025; Hong et al. 2024; Li et al. 2025b; Lu et al. 2023).

For instance, protection against honest-but-curious ser-
vice providers may require different mechanisms than pro-
tection against malicious attackers with access to auxiliary
information. Similarly, scenarios where attackers possess
substantial background knowledge about users necessitate
stronger privacy guarantees. Even the lifespan of stored data
can influence privacy risks, as information that appears se-
cure today may become vulnerable with more powerful ad-
versaries in the future (Gomes, Sant’Ana, and Rodrigues
2025; Xin et al. 2025). Clearly, a framework’s ability to pro-
vide protection guarantees is a critical property.

Performance. While protection guarantees are important,
a good privacy framework must also maintain the perfor-
mance of the LLM. Several different ways to quantify per-
formance have been proposed in the literature, such as the
semantic equivalence of the reconstructed output compared
to the original output, the usability of the reconstructed out-
put, or the preservation of factual accuracy and consistency
in the reconstructed output, among others (Sun et al. 2024;
Chen et al. 2023; Hong et al. 2024). More broadly, a good
privacy framework should maintain output fidelity.

Efficiency. Efficiency relates to the computational aspects
and latency of the privacy tool. A good privacy framework
should minimize additional computational cost, avoid intro-
ducing significant latency, and scale effectively (Edemacu
and Wu 2025; Gim, Li, and Zhong 2024). By keeping the
processing lightweight and responsive, one can ensure that
privacy protections do not hinder the use of the LLM sys-
tem. Together, performance and efficiency focus on preserv-
ing the utility of the target LLM, thus maintaining the prac-
tical viability of the privacy framework.

Qualitative Properties Not all desirable properties of a
privacy tool are easy to quantify. Here, we describe two qual-
itative properties of a good privacy framework.

Domain Adaptability. Real-world scenarios demand pri-
vacy frameworks that can flexibly adapt to diverse do-
mains, even more so with the ever-growing list of LLM
use cases (Mireshghallah et al. 2024b). This adaptability can
take many forms, such as dynamically adjusting to various
expectations of protection and types of adversaries, or be-
ing able to handle specialized language or formats across
domains (Brown et al. 2022; Edemacu and Wu 2025).

For example, health-related queries or financial infor-
mation often require stronger privacy protection than gen-
eral knowledge questions or a casual conversation. In fact,
some scenarios, like sharing proprietary information with
an LLM, are more likely to involve a highly motivated ad-
versary, thus requiring stricter privacy guarantees. Thus, the
ability to adapt across various domains and LLM use cases
is essential for an effective unified privacy framework.

User Accessibility. The successful adoption of any pri-
vacy framework depends on its accessibility to end users.
This includes both the transparency of the framework as well
as the cognitive burden of incorporating it into everyday
workflows. When users can understand how their queries
are transformed, they can verify that meaning has been pre-
served or debug cases where outputs are suboptimal, which
can empower them to maintain appropriate protection. No-
tably, most widely adopted privacy tools tend to employ san-
itization (pro 2025; aimeetsprivacy 2025; Chong et al. 2024;
Zhang et al. 2025), a privacy framework that prioritizes ac-
cessibility. The appeal of a low barrier of adoption for the
end user cannot be ignored.

Note that the two qualitative properties operate at a higher
level than the quantifiable properties. Domain adaptability
may be seen as a framework’s ability to provide appropriate
protection guarantees while maintaining performance and
efficiency, across diverse domains. Similarly, user accessi-
bility can be seen as the extent to which a framework makes
the relationship between performance, efficiency, and pri-
vacy understandable and controllable for the end user.

3 User Profiles as Motivating Examples

Avery’s Marathon Preparation. Avery wants to use an
LLM chatbot to design a personalized fitness journey to help
them prepare for a marathon. They aim to develop dietary
plans, identify exercises, and create a strategy to be able to
run the marathon in six months. As a meticulous researcher,
Avery is not concerned about the accuracy of the LLM’s sug-
gestions, since they plan to verify the details independently.
Their primary goal is to generate a quick initial draft of the
plan that can be refined later. However, Avery is concerned
about targeted ads if their chat history gets leaked acciden-
tally or is sold intentionally by the third-party LLM.

Sasha’s Work Companion. Sasha’s company has rolled
out a work companion using a third-party LLM API to assist
employees with routine tasks such as summarizing reports,
creating presentations, and more. Sasha plans to use this tool
when working with confidential documents, so strong pri-
vacy protections are critical. A tool that requires constant
supervision would be counterproductive, so Sasha will only
use the work companion if it is highly accurate, even if it is
costly. Sasha is not responsible for the compute costs, as the
tool runs on the company’s centralized infrastructure, while
of course utilizing a third-party LLM API underneath. Note
that the trusted local environment here includes the company
infrastructure, but not the third-party LLM.

Tao’s Writing Assistant. Tao is a non-native English
speaker who wants to use an LLM-based writing assistant
to help with personal emails and other forms of communi-
cation. Since these interactions are mostly casual, Tao is not
overly concerned about privacy risks. However, they would
like to ensure that no unnecessary identifying information is
shared with the LLM. For Tao, accuracy and speed, allowing
seamless integration of the tool into their daily life, are more
important than strict privacy guarantees.
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Figure 3: Four common frameworks for prompt privacy: sanitization, differential privacy, cryptography, and contextual integrity.

4 Sanitization: A Misplaced Sense of Safety

Sanitization refers to techniques that remove, mask, or gen-
eralize parts of the prompt in an effort to reduce exposure of
sensitive information, as illustrated in Figure 3. These meth-
ods work at the surface level, making them efficient with-
out degrading performance, but they lack rigorous protection
guarantees and can create a false sense of safety. Sanitization
often relies on lexical patterns and is thus highly accessible
for end users. However, it can easily over- or under-sanitize
since what counts as private varies widely across domains.

4.1 Lexical Sanitization misses Semantic Context

Lexical sanitization (Hedegaard, Houen, and Simonsen
2009; Papadopoulou et al. 2022; Albanese, Ciolek, and
D’Ippolito 2023; Sanchez and Batet 2015) refers to tech-
niques that focus solely on sanitizing specific words or
phrases from a prompt, without considering the semantic
meaning or broader context of the sentence. This category
encompasses common approaches such as PII removal and
named entity recognition (NER)-based methods. However,
these techniques are frequently criticized for overlooking
the complex linguistic and relational cues present in natural
language (Guo, Shang, and Clavel 2024; Sinha et al. 2022).
Moreover, since lexical sanitization methods rely on prede-
fined lists of words or categories, they often fail to general-
ize across domains where sensitive information can take on
many different forms. As a result, what qualifies as sensitive
or identifying in one setting may go undetected in another,
limiting their adaptability across a wide range of domains
(Mireshghallah et al. 2024b).

Several works have shown that the syntactic properties of
prompts, like paraphrasing, changes in formality, concrete-
ness, grammatical mood, etc., can significantly influence the
outputs of LLMs (Leidinger, van Rooij, and Shutova 2023;
Rawte et al. 2023; Chataigner et al. 2025). In fact, the se-
mantic interdependence of words remains hard to model
even in information-theoretic frameworks, where it is nec-
essary to have a finite set of valid alternatives to an invalid
query (Glukhov et al. 2025). This further challenges the ef-
fectiveness of lexical sanitization, since these tools may fail
to capture sensitive content if they miss key elements of the
user’s language. This disconnect between lexical cues and
true context can instill a false sense of confidence in saniti-

zation, leaving users exposed to privacy risks.

4.2 Lack of Guarantees under Sanitization

Recent works have revealed that the effectiveness of sani-
tization in removing sensitive information is often overes-
timated, leading to vulnerabilities that can be exploited by
adversaries. Black-box attacks on LLMs have demonstrated
that, even after sanitization or de-identification, adversaries
can reconstruct or infer sensitive information from model
outputs by exploiting residual semantic cues and contextual
patterns (Carpentier et al. 2025; Hong et al. 2024; Li, Tan,
and Liu 2025; Tong et al. 2025; Xin et al. 2025).

This vulnerability can extend beyond simple extraction to
more sophisticated forms of reconstruction and inference,
where attackers use contextual hints or auxiliary informa-
tion to piece together private content. Such findings high-
light that surface-level masking is rarely sufficient for robust
privacy protection, especially in real-world scenarios with
motivated adversaries (Li et al. 2025b). Hence, while san-
itization can create a sense of privacy by removing certain
words from the sentence, they have an even greater risk of
misleading users (Edemacu and Wu 2025; Tong et al. 2025;
Papadopoulou et al. 2022).

(" )

Sanitization frameworks offer a surface-level protec-
tion against privacy risks. While useful in some sit-
uations, sanitization cannot protect against motivated
adversaries and fails to capture the dynamic, context-
sensitive nature of real-world privacy across domains.

Sanitization risks exposing Avery to targeted ads and
leaking company data for Sasha, making it unsuitable
for them both. For Tao, however, it may be an appro-
priate tool, providing good performance and efficiency,

along with sufficient surface-level privacy.
& J

5 Differential Privacy: Promises and Pitfalls

Differential Privacy (DP) is a foundational framework of
privacy in data-driven systems and has long been regarded
as the gold standard in many traditional machine learning
(ML) settings (Dwork and Roth 2014). At its core, DP pro-
vides a powerful guarantee: the output of a system should
remain nearly indistinguishable regardless of the presence



or absence of a single individual in the data, achieved by in-
troducing random noise. Thus, an adversary with access to
the output cannot confidently predict the membership of an
individual in the input data.

While DP is most commonly used to protect training
datasets in ML, it can also be extended to prompt privacy. In
this setting, DP is applied to the input prompt by injecting
random noise through perturbations, ensuring that the per-
turbed prompt could have plausibly come from many differ-
ent input prompts (Wu et al.), as illustrated in Figure 3. Thus,
an adversary with access to only the perturbed prompt can-
not confidently state which input prompt was used, thereby
protecting information present in the original prompt.

5.1 Relative Bounds, Not Absolute Walls

DP provides relative bounds on information leakage rather
than preventing the absolute flow of information. In essence,
DP ensures that an adversary cannot reliably distinguish be-
tween neighboring prompts. However, if certain information
is common across all neighbouring prompts, the adversary
can still infer it. For example, suppose a user asks an LLM
about a particular medication. DP may perturb the prompt so
that the medication name is replaced with that of a similar
but different drug. While this prevents the adversary from
confidently recovering the original medication, even knowl-
edge of the perturbed alternative still reveals significant in-
formation about the user’s potential medical condition.

This can be partially addressed, somewhat artificially, by
adjusting the strictness of DP through modifications to the
definition of neighbouring. Expanding the notion of neigh-
bouring increases protection, since indistinguishability must
hold across a broader set of prompts. However, this also
harms model performance, as essential information needed
for accurate responses is suppressed. This tension gives rise
to the well-known privacy-utility trade-off at the core of DP.
Additionally, in the context of prompts, even defining what
counts as neighbouring prompts introduces two fundamental
challenges, which we explore in the following subsections.

5.2 The Structural Limits of DP for Prompts

DP relies on having a clear definition of a “secret” or sensi-
tive record. For language data, and especially for prompts, it
is difficult to establish consistent boundaries for what should
be protected. Language does not have a universal unit for
sensitive information. A “record” for DP can refer to a word,
a sentence, a prompt, or even all the data from a single user.

On the one hand, if privacy is defined at the level of a
prompt or an entire conversation, then the resulting guar-
antees are overly coarse and impractical, since the mecha-
nism would need to inject prohibitive amounts of noise to
provide formal protection, severely degrading utility. How-
ever, on the other hand, if privacy is defined at the word or
sentence level, removing these units rarely hides private in-
formation, and does not prevent an adversary from inferring
sensitive context from the rest of the prompt or related pat-
terns (Brown et al. 2022; Mireshghallah et al. 2024a).

An interesting artifact of this can be seen in the exist-
ing literature that uses DP for prompts, where many prompt

privacy techniques are designed for context-specific objec-
tives, such as author obfuscation or single-sentence protec-
tion, rather than attempting to capture the broader, ever-
evolving risks in real-world scenarios (Li et al. 2025b; Ut-
pala, Hooker, and Chen 2023).

5.3 The Difficulty of Defining Prompt Similarity

Another challenge of defining neighbouring prompts in DP
lies in choosing a meaningful similarity metric. As similar-
ity in the semantic space is not directly quantifiable, it is of-
ten mapped into a different space, such as the embeddings.
However, this introduces a gap between the measured sim-
ilarity and the actual semantic similarity. As a result, these
metrics frequently miss linguistic cues and stylistic markers
through which sensitive information can leak. Consequently,
even prompts that appear safe may contain identifying de-
tails, undermining the intended privacy guarantees (Du et al.
2023; Mattern, Weggenmann, and Kerschbaum 2022).

These difficulties are further compounded by the evolv-
ing nature of language and privacy norms. Language and the
notion of what constitutes private or sensitive information
are both fluid and continually evolving. Changes in linguis-
tic usage, shifting social norms, and cultural movements can
rapidly redefine how secrets are discussed or even whether
certain information is seen as secret at all. On digital plat-
forms, users frequently adopt coded language, euphemisms,
or algospeak to bypass automated moderation, with new
terms emerging as soon as old ones are flagged by algo-
rithms. Any privacy approach, like DP, that relies on a static
understanding of sensitive content will inevitably lag behind
these changes, and thus fail to robustly protect user privacy
in real time (Brown et al. 2022; Edemacu and Wu 2025).
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Differential privacy offers strong guarantees, and can
defend against malicious adversaries. However, its lim-
itations are not just technical obstacles, but reflect a
deeper misalignment between the rigid requirements of
differential privacy and the fundamentally dynamic re-
ality of language, which can render these guarantees
obsolete in many real-world scenarios.

Performance drop under differential privacy would be
unacceptable for both Sasha and Tao. While Avery
could benefit from the protection provided by differen-
tial privacy, they should have a proper understanding of

the privacy-utility trade-off to take advantage of DP.
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6 Cryptography: A Costly Alternative

Cryptography in the context of privacy refers to a wide
range of techniques that rely on secure computation, in-
cluding encryption (Acar et al. 2018), secret sharing (Zhao
et al. 2019), zero-knowledge proofs (Fiege, Fiat, and Shamir
1987), oblivious transfer (Yadav et al. 2022), etc. Two cryp-
tographic techniques are common in prompt privacy liter-
ature: Homomorphic Encryption (HE) and Secure Multi-
Party Computation (MPC). HE enables computation di-
rectly on encrypted text, as shown in Figure 3, and decrypts
the output in the trusted environment (Zhang et al. 2024a;



Zimerman et al. 2025). MPC, on the other hand, distributes
the computation across multiple independent parties, ensur-
ing that no single party has access to the complete input (Xu
et al. 2025). Cryptography can provide guarantees against
information leakage, without altering the model input, thus
preserving performance. However, it is computationally ex-
pensive and challenging to scale to LLMs.

6.1 The Barrier of Non-Linearity

HE holds great appeal because it promises the best of both
worlds: privacy-preserving encryption and full utility of the
model (Acar et al. 2018). In practice, however, it is highly
constrained. HE is relatively efficient for linear algebra op-
erations, such as the large matrix multiplications. The chal-
lenge arises with nonlinear operations like ReLLU, softmax,
and the attention mechanism itself, which can either make
HE extremely slow or require polynomial approximations
that quickly become unstable and expensive (Mittal 2024;
Xu et al. 2025; Zhang et al. 2023). Thus, HE does not scale
well for large neural networks, especially LLMs.

6.2 Specialized Infrastructure Requirements

A major barrier to the use of cryptographic techniques for
prompt privacy in LLMs is the need for specialized infras-
tructure. MPC requires multiple non-colluding servers to
jointly host and run the model, with heavy inter-server com-
munication during inference. This is at direct odds with the
way LLMs are deployed today, as centralized services opti-
mized for single-node or tightly clustered GPU execution.

Similarly, HE also comes with significant infrastructure
demands. Existing models trained on non encrypted text
cannot be simply used “as is” on encrypted prompts. Instead,
the model must be reimplemented within an HE-compatible
framework, fundamentally changing the serving pipeline it-
self. In short, whether we use HE or MPC, the existing LLM
infrastructure does not support these techniques out of the
box, and would require substantial re-engineering.

6.3 Communication Overhead in Cryptography

Recent works have attempted to combine both HE and MPC,
taking advantage of their strengths to create hybrid tech-
niques (Xu et al. 2025; Lu et al. 2023; Pang et al. 2024).
While this has provided significant improvements, these
techniques do not escape the fundamental cost barrier. Even
under optimistic assumptions of specialized infrastructure,
hybrid techniques still introduce significant communication
costs that accumulate quickly.

For instance, a common hybrid approach combines HE
for linear layers with MPC for nonlinear layers (Xu et al.
2025). During inference, the client first encrypts the input
and sends it to the server, where the linear computations of a
single layer are done with HE. The encrypted output is then
returned to the client, who decrypts it and then distributes
it across multiple servers to handle the nonlinear computa-
tions using MPC. The outputs from MPC are combined to
produce the final output. The entire pipeline is repeated for
every subsequent layer of the model. This can significantly

increase latency, communication data volume, or both. Con-
sequently, although HE and MPC are powerful, they remain
far too expensive for real-time, large-scale LLM services.

~N

(Cryptographic techniques for prompt privacy promise
protection guarantees while maintaining model perfor-
mance, however, fall short of true practical benefits due
to their extremely high computational costs, limiting
their use to toy models or shallow networks.

The high cost of cryptographic techniques makes it an
unacceptable solution for Avery and Tao. As Sasha’s
work companion is deployed through the company in-
frastructure, they could benefit from the guarantees it
provides against absolute information leakage. How-
ever, even for Sasha, a truly practical cryptographic sys-
tem requires significant future developments.
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7 Contextual Integrity: A Distant Ideal

Contextual Integrity (CI) (Nissenbaum 2004; Mireshghal-
lah et al. 2024b) offers a principled way to analyze and
adapt privacy norms as technology and society evolve. CI is
the only framework in our discussion that was not adopted
from traditional ML settings, and frames privacy not as a
static property but as the appropriateness of information flow
within a given social context, by examining who is sharing
information, what is being shared, with whom, for what pur-
pose, and under what transmission principles (Mireshghal-
lah et al. 2024b; Shvartzshnaider and Duddu 2025; Nis-
senbaum 2004), an example shown in Figure 3.

While CI moves beyond binary public/private distinc-
tions, recent critiques note that LLM research often
“washes” CI in an attempt to operationalize it, adopting CI
terminology while neglecting its core principles (Shvartzsh-
naider and Duddu 2025; Brown et al. 2022). Thus, despite its
value as a theoretical lens to study privacy in prompts, trans-
lating it into practice remains a significant challenge. Sev-
eral arguments in this section build on Shvartzshnaider and
Duddu (Shvartzshnaider and Duddu 2025)’s position that CI
is inadequately applied to LLMs.

7.1 Not Just a Special Case of Sanitization

Existing attempts to operationalize CI tend to encode fixed
privacy norms or rules, drawing from legal codes, crowd-
sourced inputs, or author judgment (Shao et al. 2025;
Ghalebikesabi et al. 2024; Cheng et al. 2024; Li et al.
2025a). This process simplifies a flexible, context-sensitive
theory into a static set of templates or checklists. In fact,
many approaches that operationalize CI do so through
prompt sanitization or norm enforcement (Hartmann et al.
2024; Ngong et al. 2025; Shvartzshnaider and Duddu 2025).

As aresult, these tools struggle to adapt to changing social
contexts, evolving notions of sensitivity, and the diversity
and dynamism inherent in real-world communication (Co-
fone 2018; Shvartzshnaider and Duddu 2025; Edemacu and
Wu 2025). Consequently, they encounter practical barriers
when essential and non-essential information is difficult to
separate, or when attempts to sanitize prompts make them



unusable for the user’s actual task (Shao et al. 2025). Rule-
based methods are ill-suited for the open-ended, context-
rich, and utility-driven scenarios that characterize prompt in-
teractions with LLMs (Mireshghallah et al. 2024b).

Furthermore, even automated attempts to enforce CI, such
as using LLMs or classifiers to judge appropriateness (Gu
et al. 2025), add another layer of abstraction. These mod-
els often miss nuanced context, misclassify cases, or require
significant user intervention. This tendency results in a cycle
where the promise of robust privacy is not met in practice,
and users are left with either reduced functionality or insuf-
ficient protection (Ngong et al. 2025).

7.2 The Difficulty of Defining Social Norms

Cl is frequently reduced to regulatory compliance or mini-
mization, losing the framework’s distinctiveness (Shvartzsh-
naider and Duddu 2025), thus focusing on preventing the
leakage of a fixed set of sensitive information or enforc-
ing policy rules. However, true CI analysis should holisti-
cally assess the appropriateness of information flow in con-
text, considering roles, values, and functions, not merely
whether “private” information was shared (Shvartzshnaider
and Duddu 2025; Yang et al. 2013; Barkhuus 2012). Laws
and regulations, while influential, do not always reflect lived
or moral norms in society, and privacy preferences collected
from users may fail to capture the collective or ethical nature
of privacy that CI intends to protect (Neel and Chang 2023).

The biggest culprit of this trend is the reduction of CI
to focus almost exclusively on “sensitive information”. This
narrow focus leaves other privacy harms unaddressed, such
as intrusion, profiling, or the gradual build-up of risk across
a series of interactions. Privacy violations can occur over
time or through patterns that single-turn evaluations do not
capture, yet existing tools rarely address these longitudinal
threats (Lukas et al. 2023).

4 )

Contextual integrity aims to study the dynamic nature
of information flow in prompt privacy. However, trans-
lating this framework into a practical tool remains a
challenge, without losing the very fluidity that makes it
valuable. As Shvartzshnaider and Duddu (2025) argue,
contextual integrity is a social theory, one that requires
more than just purely algorithmic solutions.

The high barrier to entry makes contextual integrity an
unlikely choice for Tao. For others, it could in princi-
ple be effective, for example, keeping Avery protected
from targeted ads while still delivering a useful strat-
egy, or preventing Sasha from sharing certain confiden-
tial documents. However, such context-specific tools
should already exist and be accessible to the end users.

- J

8 Underlying Tensions in Prompt Privacy

We have examined the shortcomings and challenges across
various categories of existing privacy frameworks for
prompts. However, even if these individual shortcomings
were addressed in the future, we argue that there are un-
derlying non-trivial tensions inherent to prompt privacy in

the age of LLMs that would prevent the development of a
unified framework. We discuss these tensions below.

8.1 Guarantees, Performance and Efficiency

Regardless of the underlying model, natural language pro-
cessing (NLP) systems transform language into vector rep-
resentations through embeddings. This transformation from
natural language to representation creates an inherent dis-
connect that generates tension between three critical dimen-
sions: protection guarantees, performance, and efficiency.

The core challenge stems from defining “similarity”
across two spaces. Semantic similarity in language space
may not always align with similarity in the representational
space (§ 5.3), affecting both protection guarantees and LLM
utility (i.e., performance and efficiency). Privacy frame-
works that focus on the representations, such as differential
privacy (§ 5) and cryptography (§ 6), operate in a mathe-
matical domain where information leakage guarantees can
be formally proven. Yet, to truly prevent sensitive informa-
tion flow, these techniques need to ‘over-protect’ at the rep-
resentational level, to ensure appropriate protection in the
language space, at the cost of degraded performance (differ-
ential privacy, § 5) or reduced efficiency (cryptography, § 6).
On the other hand, frameworks that operate in the language
space, such as sanitization (§ 4), can maintain performance
and efficiency, but lack any protection guarantees.

This is more than just a trivial limitation of existing pri-
vacy frameworks. Any future privacy framework must also
deal with the underlying tension between choosing stronger
guarantees in the representational space (at the cost of per-
formance or efficiency) or better performance and efficiency
in language space (at the cost of formal guarantees).

8.2 User Accessibility and Domain Adaptability

Beyond the three quantifiable properties, we also defined
two qualitative properties of a good prompt privacy frame-
work (§ 2.2). Through the study of existing frameworks, we
find another underlying tension in prompt privacy between
these two qualitative properties. The tension between user
accessibility and domain adaptability emerges from the re-
markable breadth of applications for which LLMs are now
employed. This diversity of use cases creates vastly differ-
ent privacy requirements across domains (§ 4.1, 7.2). For
instance, medical consultations, legal document review, cre-
ative writing, and casual conversation each demand distinct
privacy considerations based on different notions of sensi-
tivity, regulatory requirements, and social norms.

Unfortunately, a framework capable of truly adapting to
this variety of domains and covering all different require-
ments necessarily demands significant privacy literacy from
users. Thus, the accessibility and ease of use of a privacy
framework stand in fundamental opposition to the compre-
hensive adaptability required for LLM applications. This
creates an unavoidable choice: frameworks can either be ac-
cessible and easy to use, or they can be highly adaptable
across domains, but not both.

Accessible frameworks like sanitization (§ 4) require min-
imal cognitive overhead, and users can quickly apply these



Detailed Requirements:

|
ﬁg |

|

Avery }

Use Case: Help with }
preparing for a marathon |

1. Generate a quick initial draft of a plan, which can be
refined later, to help Avery prepare for a marathon.
2. Efficiency is important, minor errors are acceptable.
3. Avoid targeted ads if the chat gets leaked or sold.

|
} Recommendation: }
I Avery may choose DP, but should understand
} it only offers relative protection. Context- |
| specific evaluation of DP for ad-serving will }
} also help Avery make this decision. |

&V } Detailed Requirements:
|
Sasha }
Use Case: Enterprise }
work companion |

1. A internal work companion provided by Sasha’s
company, which relies on a third-party LLM APL
2. Can be slow or costly, but errors are not acceptable.
3. Avoid sharing confidential information to the LLM.

|
} Recommendation: }
} Sasha’s company may choose cryptographic
| solutions, specifically optimized for their use |
I case. Giving employees literacy of what }
} documents to never share can also help. |

L& } Detailed Requirements:
|
Tao }
Use Case: LLM-based }
writing assistant |

1. Help with writing emails or other communications.
2. Both efficiency and performance are important.

3. No major privacy concerns, but Tao wants to avoid
sharing unnecessary identifying information.

} } Recommendation: |
I'l' Tao may choose sanitization, that provides }
} } utility and surface-level protection. However, |
I'1 they should be aware of potential risks of }
} } using the tool in other sensitive scenarios. |

Figure 4: Motivating use cases as defined in § 3, along with recommendations based on our discussions in the paper.

approaches without extensive training. However, they strug-
gle with domain adaptability due to changing specialized
terminology across fields, evolving social norms, and vary-
ing definitions of what constitutes sensitive information in
different contexts (§ 4.1). On the other end of the spec-
trum, adaptable frameworks like contextual integrity (§ 7)
are specifically designed for cross-domain flexibility. How-
ever, they demand domain-specific expertise, a deep under-
standing of how privacy situations are constructed, and how
sensitivity is defined in various contexts (§ 7.2). This com-
plexity creates significant barriers to adoption by end users.

9 Where do we go from here?

We argued that a unified framework for privacy is elusive,
and that trying to promote one as a universal solution will
mislead users. However, we bring the reader’s attention back
to motivating examples in § 3. Throughout our discussion,
we found that even though unified frameworks are out of
reach, certain tools can benefit theseusers in concrete sce-
narios. We summarize these solutions in Figure 4. Two key
points deserve emphasis and form the basis of our rec-
ommendations: first, effective context-specific solutions are
possible; second, improving end users’ privacy literacy is es-
sential, both to help them select the appropriate solution and
to understand its limitations.

Context-Specific Evaluations. We find that the first step
toward building an effective privacy tool is recognizing the
requirements of the application. Understanding what the
user needs, what trade-offs they will accept, and which pri-
vacy risks are relevant helps guide the selection of an appro-
priate tool. Theories like contextual integrity (Nissenbaum
2004) can be particularly useful in this process. The “De-
tailed Requirements” in Figure 4 illustrates this exercise.
Once the requirements are identified, the next challenge is
assessing how well different privacy frameworks perform in
that setting. For example, based solely on the fundamental
properties of DP, it is unclear whether it can provide suf-
ficient protection against targeted ads that Avery might re-
ceive. Similarly, the boundary of when sanitization can be
problematic in email writing for Tao remains poorly under-

stood. While many works focus on improving privacy frame-
works, evaluating these systems in specific contexts is rare.

We strongly recommend that the community move to-
ward context-specific and application-specific evaluation
of privacy frameworks, to gain a clearer understanding of
their strengths and limitations for real-world use.

Fostering Privacy Literacy. In the absence of a univer-
sal solution and with the search for context-specific privacy
frameworks, it becomes even more important to help users
understand the trade-offs involved in using different tools.
For instance, while no single tool is ideal for Sasha’s com-
pany (cryptography being the closest, though still imprac-
tical), educating employees about which types of company
information should never be shared with an LLM can help
reduce information leakage while still providing them with
an LLM-based work companion.

Many users remain unaware of how their inputs may be
stored, aggregated, or used for training, which can create
a false sense of safety and lead to uninformed sharing of
information. Future systems should explore mechanisms to
communicate these risks proactively. This could include in-
context warnings, real-time feedback on risky disclosures,
and educational efforts to improve literacy around privacy.

Empowering users with stronger literacy and accurate
mental models of how their data is handled is essential to
fostering safer and trustworthy interactions.

Prompt privacy in LLMs will remain a moving target,
shaped by its expanding list of applications and user expec-
tations. Rather than chasing a unified framework, we argue
for context-aware solutions coupled with efforts to raise pri-
vacy literacy, which can together make meaningful progress
toward safer and more trustworthy systems.
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