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ABSTRACT

Financial trading is at the forefront of time-series analysis,
and has grown hand-in-hand with it. The advent of electronic
trading has allowed complex machine learning solutions to
enter the field of financial trading. Financial markets have
both long term and short term signals and thus a good pre-
dictive model in financial trading should be able to incorpo-
rate them together. One of the most sought after forms of
electronic trading is high-frequency trading (HFT), typically
known for microsecond sensitive changes, which results in a
tremendous amount of data. LSTMs are one of the most ca-
pable variants of the RNN family that can handle long-term
dependencies, but even they are not equipped to handle such
long sequences of the order of thousands of data points like
in HFT. We propose very-long short term memory networks,
or VLSTMs, to deal with such extreme length sequences. We
explore the importance of VLSTMs in the context of HFT.
We compare our model on publicly available dataset and got
a 3.14% increase in F1-score over the existing state-of-the-art
time-series forecasting models. We also show that our model
has great parallelization potential, which is essential for prac-
tical purposes when trading on such markets.

Index Terms— Deep Learning, LSTM, Time-Series
Forecasting, Finance, High-Frequency Trading

1. INTRODUCTION

The usage of predictive models to infer future prices of
various commodities using historical data is not new in quan-
titative finance, and is commonly referred to as algorithmic
trading [[1, 2]]. Older methods of algorithmic trading includes
mathematical modeling of the data, for example CAPM,
Fama and French factors [3]. However, these models require
precise modeling and are not capable of handling the noisy
and irrational behaviour of the financial markets.

Deep learning methods are prophesied to revolutionize the
field of machine learning (ML) and represent a step towards
building autonomous systems. These methods are generally
more robust to noises and can learn to model based on the in-
put data. Various advancements have been made in the field of
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time-series analysis using deep learning, which includes sim-
pler models like LSTMs [4] and RNNs, as well as more com-
plicated additions like attention mechanism [S|]. While these
methods have gained success in the world of time-series anal-
ysis, the requirements of algorithmic trading are very unique.

High Frequency Trading (HFT) is one of the extreme
forms of electronic trading. The special challenges for ML
presented by HFT can be considered two fold : (i) Microsec-
ond sensitive live trading - As the complexity of the model
increases, it gets more computationally expensive to keep up
with the speed of live trading and actually use the informa-
tion provided by the model, and (ii) Tremendous amount and
fine granularity of data - The historical data available in HFT
is extremely lengthy yet precise. However there is a lack
of understanding of how the low-level data (changing every
microsecond) and the high-level data (changing every few
minutes) can together relate to actionable circumstances [6].

In this paper, we propose VLSTMs, a novel variant of
LSTMs, which are capable of handling time-series sequences
with length of the order of thousands. We achieve this by
dealing with the input sequence at multiple frequencies, al-
lowing us to separately process both low-level and high-level
signals and then combine the information together for bet-
ter final performance. Since different levels of the signal are
processed in parallel, this makes it easy to do them simul-
taneously. Thus our model does not compromise its execu-
tion speed, even though the computational requirements of
our model has increased. Our contributions include :

* A novel LSTM variant to efficiently combine long term
and short term signals from the input sequence.

* Improved scope of parallelization, as the model com-
plexity is increased along the width and not the depth.

 Tested on publicly available datasets and found 12.37%
increase in F1 score over vanilla LSTMs and 3.14% in-
crease over current state-of-the-art.

The rest of the paper is organized as follows. Section
introduces financial background and reviews related work
in this field. Section [Blintroduces our VLSTM architecture.
Section [ presents extensive evaluation results to support our
model design and Section [5|concludes the discussion.



2. BACKGROUND

2.1. Tick Data and Bid-Ask Spread

Tick data is the raw, uncompressed data of the trading behav-
ior available from electronically traded markets. Every order
request, change in the state of order book and trade informa-
tion is registered as a “tick” event. Bid and Ask are the prices
that buyers and sellers are willing to transact at, the bid for
buying, and the ask for selling. A transaction occurs when
either a potential buyer is willing to pay the ask price, or a
potential seller is willing to accept the bid price. The mid-
price is the mean price of the top bid and top ask price [[7]].

2.2. Mean Reversion

Mean reversion is a financial theory which suggests that the
price of a stock tends to return towards its long running mean
price over time [7]] and such a behavior is seen in most of the
stock markets across the world [8]. Trading on this strategy is
done by noticing companies whose stock values have signif-
icantly moved away in some direction from its long running
mean and thus is now expected to move in the opposite direc-
tion. Using mean reversion in stock price prediction involves
both identifying the trading range for a stock (short-term in-
formation) and the evolution of the mean around which the
prices will be oscillating (long-term information).

2.3. Related Work

The success of deep learning models has penetrated a lot of
fields, including finance. However its reach in HFT is limited
[9], primarily due to the computational constraints and prim-
itive problem modeling methods. While there has been some
work done on the algorithmic side [10], most of the work has
been focused on feature engineering in HFT [6} (11} [12, {13}
14]), with simpler models like linear regression, multiple ker-
nel learning, maximum margin etc. [6}[15]

Long short-term memory networks (LSTMs) [4] are one
of the most commonly used deep learning models for time-
series analysis. Multiple variations of LSTM have been pro-
posed over time which deal with the multi-context and long
sequence length problems. For example, Hierarchical LSTMs
[L6} [17] were proposed to make character level LSTMs in
NLP feasible. In this architecture, the input to the upper
LSTM is the output provided by the lower LSTM, thus form-
ing a hierarchical structure. Similar networks of multi-scale
LSTMs have also been proposed for applications in document
modelling [18]], wind speed forecasting [[19], sound event de-
tection [20]], etc. These kind of architectures also provide
better connections for back-propagation during training on
longer sequences. There have also been other additions to
the vanilla LSTM, like the attention mechanism [3f], which
improves its ability to handle longer sequences by allowing it
to attend to only a part of the sequence at a time.

3. VLSTM

We propose a novel variant of LSTM, which we call VLSTM,
specialised to handle longer sequences. We first explain the
theoretical motivation behind our model design and then in-
troduce the architecture of a VLSTM.

3.1. Motivation

Model depth and width are two ways in which the complexity
of a deep learning model can be increased. Recent advances
have shown that analysing the input at varying context, which
can be done by increasing the model width, can help us cre-
ate a more accurate and robust model [21]. Thus, we aim to
create a deep learning model that can provide multi-context
features at every input time step. This can be achieved by us-
ing multiple LSTM models simultaneously, each focused on
extracting features from a different context level.

LSTMs working at different levels (or context) can cap-
ture a variety of information. For example, a lower-level
LSTM can focus on the fine-grained and most recent be-
haviour of the market while a higher-level LSTM can focus
on the long-term changes in the trend. However, existing vari-
ations of multi-scale LSTM models use the output provided
by lower-level LSTM as input to the higher-level LSTM. This
means that the higher-level LSTM do not get access to the
raw input sequence and is forced to work with the lower-
level LSTM for feature creation. We hypothesize that due to
this dependency, the lower-level LSTM is now focused on
creating an input for the higher-level LSTM instead of cre-
ating a good feature representation of fine grained features.
Similarly, the higher-level LSTM is now forced to create the
final feature representation of the sequence, instead of just
focusing on long-term trends present in the sequence.

We propose to decouple the functionality of LSTMs at
various levels, thus allowing them to focus on only individual
contexts. This can be achieved by running different LSTM
levels on the raw input sequence independently, and combin-
ing the final features obtained from each level. Such a design
also allows us to create a model which can provide output
for every input time step, instead of only providing output at
the frequency of the highest level LSTM, since at every time
step atleast one of the LSTMs will update their features, thus
updating the complete feature representation.

Note : Since we are working with parallel LSTMs now,
the terms lower-level and higher-level LSTM as used in multi-
scale LSTMs have been adopted accordingly. Lower-level
refers to LSTMs that work on the input signal at a higher fre-
quency and are expected to provide short-term and more fine
grained information, and vice-versa for higher-level LSTMs.

3.2. Model Design

Let the input signal be {xg,x1,x2....2,}, where x; rep-
resents the input vector at timestep ¢, and let there be k
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Fig. 1. Multi-Scale LSTM {1, 5} (left) vs VLSTM {1, 5} (right).

LSTMs working at levels {l1,l5....I.}. For the p'* LSTM
working at level [,, denote the input, output, input cell
state, and output cell state respectively for the i*” timestep
as {W/, VP, C}, ,Ch,;.}. Based on the functioning of a
conventional LSTM cell, generally we have {V,C,,1} =
o (W, Cyy,), where o is the LSTM network.

The input to an LSTM at level [, is sampled at a frequency
of 1/1, from the original input sequence and the output ob-
tained is copied for [,, timesteps, i.e. until the next output is
obtained. Thus, the output Yip obtained from the LSTM at
level [, at timestep ¢ can be defined as,
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Once we have feature outputs from every LSTM level,
these features are concatenated and passed through a dense
layer followed by softmax to produce final classification out-
puts. We can define the final output Y; at timestep ¢ as,

Y; = ¢c(De(Yi @ Y2 @Y7, ., Y)F), 3)

where @ denotes feature concatenation, D~ denoted the
dense layer for classification and ¢ denoted the final soft-
max activation. Thus we get outputs {Yp, Y7, Y5....Y;, } which

can be interpreted for predicted price movement. Refer to Fig
[l for differences between a multi-scale LSTM and VLSTM.

4. EVALUATION

We use a publicly available limit order book data to test our
model and some other baseline methods. First, we do an in-
ternal ablation study of various levels in VLSTM to better un-
derstand the nature of the dataset as well as our model archi-
tecture. Next, we compare our model with existing state-of-
the-art deep learning based time-series forecasting methods.

4.1. Dataset

We test our model on a limit order book data by doing mid-
price movement prediction [22]]. Instead of using only the raw
bid and ask values, several complicated hand-crafted features
have also been provided by the authors, which are calculated
using both static order book information as well as dynamic
change in features across time. A total of 144 features are
used to represent each tick [22]. We used the publicly avail-
able version of the datasetﬂ The dataset contains 10 days of
data with a total of almost 400 thousand ticks. We use the z-
score based standardization provided in the dataset for our ex-
periments. We also use the label creation method as proposed
by [23] in order to create 3 classes, i.e., upward and down-
ward movement of mid-price which crosses the threshold, and
movememnt of mid-price within the threshold. We use the
threshold of 10% change in mid-price in order to maintain
balance between data points attributed to the 3 classes.

4.2. Model and Experiment Settings

We experiment with the following LSTM levels {1, 5, 20,
100}. Each level has 2 LSTM cells stacked on top of each
other with 64 neurons each. The final dense layer used for
concatenated features contains 128 neurons. Activation func-
tions used are ReLU at every hidden layer except the classi-
fication layer. The error function used is Categorical Cross
entropy with Adam optimizer.

Out of the 10 days of data present in the dataset, we use
the first 6 days for training, next 1 day for validation and the
final 3 days for testing. We use sliding window method to
augment the training dataset and use windows of length 5,000
ticks in order to generate enough inputs for the highest-level
LSTM (I, = 100). We allow the model to run continuously

Uhttps://etsin.fairdata.fi/dataset/73eb48d7-4dbc-4al10-a52a-
da745b47a649



on the test and validation datasets and use mean F1 score
across all 3 classes to measure their performance. We also
do not make prediction for the first 5,000 ticks of the day, for
the same reasons as mentioned above. We use 3 different pre-
diction horizons h = {100, 200, 500} (measured in number
of ticks) to compare models under varying prediction targets.

4.3. Baseline Methods

We use 4 different models as baseline methods. First, we use a
simple fully-connected multi-layer perceptron (MLP), with 3
hidden layers containing 64, 64 and 128 neurons respectively.
Second, we use a vanilla LSTM model, with 2 LSTM cells
of 64 neurons each stacked on top of each other, followed by
a dense layer with 128 neurons. Next, we add the attention
proposed by [3] on top of our vanilla LSTM model. Finally,
we use a multi-scale LSTM model similar to one proposed in
[[18]], with the same multi-level settings as our VLSTM.

4.4. Individual LSTMs and VLSTM

We first experimented with VLSTMs working at only one
level at a time. A VLSTM working at only level ’i’ is sim-
ply an LSTM working on the input signal collected with fre-
quency "1/7’. Since LSTM at every level needs to provide an
output to every input timestep, the output of an LSTM work-
ing at level i’ remains the same for ’i’ ticks until the next
prediction is made (as detailed in Section[3). Results for these
experiments are collected in Table[T}

LSTMs working at lower levels have the advantage of
changing their output more frequently but cannot process
long-term information well enough to make accurate predic-
tions. On the other hand, LSTMs working at higher levels
have a lot of information on how the market has been evolv-
ing for the past few hundred ticks (or even more), but their
frequency of changing outputs is extremely low. Thus both
extremes can cause a drop in F1 scores and makes the medium
level LSTMs the best performing individual LSTMs. It can
be noticed from the table that VLSTM at level 20 seems to
outperform all other individual level VLSTMs. Being able to
identify the best working individual VLSTM can also give us
more insights into the market’s inherent periodicity.

Model (13,12, ..1,,) Mean F1
h=100 h=200 h=500
VLSTM {1} 57.33% | 55.27% | 51.63%
VLSTM {5} 5897% | 57.86% | 55.29%
VLSTM {20} 63.36% | 61.74% | 58.78%
VLSTM {100} 47.38% | 46.69% | 46.21%
VLSTM {1, 5, 20, 100} ‘ 69.70% | 68.41% | 65.90%

Table 1. Performance of LSTM at various levels

Next, we combine all the individual LSTM levels to-
gether to form our proposed VLSTM model. It can be seen

that VLSTM outperforms the best performing individual
LSTM (level 20) by 6.34% and the vanilla LSTM (level 1)
by 12.37%. This shows that adding more levels increases the
variety of contextual features available to the model, which
in turns improves its F1 score.

4.5. Comparing against Baselines

We compared our model performance against various time-
series prediction baseline methods and collected the results
in Table 2] As expected, MLP is the worst performing base-
line as it does not process the input as a sequence, which is
vital to the problem statement. Vanilla LSTM is easily out-
performed by adding attention mechanism to better handle
longer sequences. However, the biggest jump in F1 score is
seen in the performance of Multi-Scale LSTMs, which goes
to show the significance of multi-context processing in such
settings. Finally, our model outperforms the best perform-
ing baseline Multi-Scale LSTMs by 3.14%, which empha-
sizes that our method of multi-context feature processing is
superior to Multi-Scale LSTMs.

Model Mean F1
h=100 h=200 h=500
MLP 51.33% | 50.97% | 50.68%
LSTM 57.33% | 55.27% | 51.63%
LSTM + Attention [S] | 60.20% | 59.58% | 56.36%
Multi-Scale LSTM [[18] | 66.56% | 63.98% | 60.80%
VLSTM 69.70% | 68.41% | 65.90%

Table 2. Comparison with other baseline models

5. CHALLENGES AND FUTURE WORK

LSTMs lead the field of time series analysis but are not
equipped to deal with extremely long input sequences. We
proposed a novel modification, VLSTMs, which can handle
such extremely long sequences by simultaneously working
at multiple levels. While our architecture is not restricted to
just one domain, we do believe that it is designed to work
in specific cases where gathering features from multiple con-
texts (or levels) makes sense. Our model contains an inherent
assumption of periodicity for higher level feature extraction
and thus might not translate well to situations where such an
assumption can hurt the performance. For example, it might
not be directly feasible for use in NLP, since it doesn’t make
any sense to read, say every 5th word in a document. How-
ever, the core idea of VLSTMs is to do multi-context feature
processing independently and thus with further research, the
same idea can be translated to these domains too.
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