

Yao Chen^{1*} Yin Yang² Deming Chen³ Marianne Winslett³ Prakhar Ganesh^{1*} ¹Advanced Digital Sciences Center, Illinois at Singapore ²College of Science and Engineering, Hamad Bin Khalifa University, Qatar ³University of Illinois at Urbana-Champaign, USA

Summary

- > Objective: Map Deep Neural Network (DNN) based object detection models to resource limited edge platforms with improved detection accuracy and runtime efficiency. > Approaches:
- Backbone Truncation: Efficient adaptation of transfer learning weights from the pre-trained backbone by truncating the task-specific layers.
- Raw Feature Collection and Redistribution (RFCR): Lightweight multi-scale feature interaction that exploits the absence of connections between non-adjacent feature scales in existing state-of-the-art methods.

YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge GPUs

Motivation

Later layers of the feature extraction backbone are extremely heavy and contains task-specific features. > Neural architecture search in multi-scale feature interaction has explored connections between non-adjacent scales, but are not yet adapted by SOTA methods.

Low-level features are precise but noisy and inaccurate while high-level features are accurate but imprecise. > RFCR combines

Madal	Input	Size	FPS			$ AP^{50}$		
Model	Res.	(MB)	Nano	NX	AGX	VOC	COCO	
Tiny-YOLOv3	416	34.9	27.36	66.55	91.71	61.30	33.10	
Tinier-YOLO	416	8.9	30.14	68.73	92.09	65.70	34.00	
YOLO Nano	416	4.0	13.62	54.03 [‡]	85.81 [‡]	69.10	_	
YOLO-Fastest	320	1.3	42.41	76.13	126.82	61.02	_	
YOLO-Fastest XL	320	3.5	27.93	61.33	108.76	69.43	32.45	
YOLO-ReT-M0.75	416	5.2	19.87	58.24	71.16	72.39	36.44	
	320	5.2	33.19	71.64	95.97	68.75	34.91	
	224	5.2	55.16	84.10	134.87	60.77	30.76	
	416	12.3	13.17	46.07	66.23	73.32	36.52	
YOLO-ReT-M1.4	320	12.3	23.01	65.37	93.49	70.35	35.77	
	224	12.3	43.16	84.32	113.94	62.91	31.63	
	416	28.3	6.35	28.83	49.07	76.49	39.12	
YOLO-ReT-EB3	320	28.3	10.96	44.59	75.61	72.96	36.51	
	224	28.3	18.57	54.87	93.55	65.52	33.11	

Madal	Input	FPS		COCO	
Model	Res.	Nano	AP	AP^{50}	AP^{75}
YOLOv4-tiny	416	29.55	21.7	40.2	22.5
YOLOv4-tiny+RFCR	416	27.81	22.9	41.5	23.3
YOLOv4-tiny (31)	608	24.87	28.7	47.2	29.7
YOLOv4-tiny (31)+ RFCR	608	21.40	29.3	48.1	30.5

WACV 2021 WAIKOLOA, HAWAII

(d) Multi-Scale Raw Features passed directly through PANet without the RFCR Module

S	them	toget	her to	create	better	overall	teatures

> Improvements in both latency and accuracy across a number of feature extraction backbones and detection heads. > Our RFCR module in YOLOv4-tiny improves performance to 41.5 mAP on COCO, outperforming the original version by 1.3 mAP.