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Background & 
Motivation

● Transfer Learning in 
Object Detection

● Multi-Scale Feature 
Interaction
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Transfer Learning in Object Detection
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Transfer Learning in Object Detection
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Transfer Learning in Object Detection
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Transfer Learning in Object Detection

● Transfer learning plays an important role in model training, specially in a low 
data setting.

● Not every layer of a pre-trained model is equally useful. Initial layers are 
known to be task-agnostic, and last layers can be task-specific.

● Despite the existence of active research in transfer learning, most SOTA 
models in vision have not adapted to this behavior.

Neyshabur, Behnam, Hanie Sedghi, and Chiyuan Zhang. "What is being transferred in transfer learning?." NeurIPS. 2020.



Multi-Scale Feature Interaction
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Multi-Scale Feature Interaction

Tan, Mingxing, Ruoming Pang, and Quoc V. Le. "EfficientDet: Scalable and efficient object detection." CVPR. 2020.
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Multi-Scale Feature Interaction

● Existing work focuses on some combination of top-down and/or bottom-up 
approaches.

● With the increasing complexity of these modules, the tradeoff between 
accuracy and efficiency has started saturating.

● NAS-based architectures have revealed the importance of direct 
connections between non-adjacent feature scales.

Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V. Le. "NAS-FPN: Learning scalable feature pyramid architecture for object detection." CVPR. 2019.



YOLO-ReT

● Importance of 
Individual Layers

● Backbone Truncation
● Raw Feature Collection 

and Redistribution
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Importance of Individual Layers



Backbone Truncation

● Initializing the last layers of the feature extraction backbone with transfer 
learning weights actually ‘hurts’ the performance.

● Since these last layers hold no transfer learning importance, they can be 
analysed purely from an architecture viewpoint.

● We propose that a truncated version of the feature extraction backbone is a 
better alternative to width reduction.
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Raw Feature Collection and Redistribution
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Raw Feature Collection and Redistribution

Simplistic 
Design

Minimal Network Fragmentation
(Each Collection and Redistribution Path Can be Executed in Parallel) 



Raw Feature Collection and Redistribution

Direct Connection Paths Even Between Non-Adjacent Scales



Raw Feature Collection and Redistribution

Independent of the number of Output Scales



Raw Feature Collection and Redistribution
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Evaluation
● Experiment Setup
● Component Ablation
● State of the art Models



Experiment Setup

● We tested with 3 lightweight feature extraction backbones 
(MobileNetV2x0.75, x1.4, and EfficientNet-B3) and various feature 
interaction methods (FPN, PANet and BiFPN).

● We evaluated our methods on Pascal VOC and COCO datasets.

● We tested our models with on-device performance latencies, on Jetson 
Nano, Jetson Xavier NX and Jetson AGX Xavier.



Qualitative Heatmap Study
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State of the art Models

Model Input Resolution
FPS AP50 (Detailed Results in Paper)

Nano NX AGX VOC COCO

Tiny-YOLOv3 416 27.36 66.55 91.71 61.30 33.10

Tinier-YOLO 416 30.14 68.73 92.09 65.70 34.00

YOLO-ReT-MobileNetV2 x 0.75 320 33.19 71.64 95.97 68.75 34.91
YOLO Nano 416 13.62 54.03 85.81 69.10 --

YOLO-ReT-MobileNetV2 x 1.4 320 23.01 65.37 93.49 70.35 35.77
YOLO Fastest 320 42.41 76.13 126.82 61.02 --

YOLO-ReT-MobileNetV2 x 1.4 224 43.16 84.32 113.94 62.91 31.63
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Code available at : github.com/prakharg24/yoloret
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