
YOLO-ReT: Towards High Accuracy
Real-time Object Detection on Edge GPUs
Prakhar Ganesh1*, Yao Chen1*, Yin Yang2, Deming Chen1,3, Marianne Winslett1,3

1

Advanced Digital Sciences Center, Illinois at Singapore

2

College of Science and Engineering, Hamad Bin Khalifa University, Qatar

3

University of Illinois at Urbana-Champaign, USA

Background &
Motivation

● Transfer Learning in
Object Detection

● Multi-Scale Feature
Interaction

Transfer Learning in Object Detection

Image
Net

Feature Extraction Backbone
Classification Head

(Fully Connected Layers)

Rapidly Increasing channel number
in the last few layers

COCO/
VOC

Detection HeadFeature Extraction Backbone

Transfer Learning in Object Detection

COCO/
VOC

What if we had randomly initialised the last layer?

Detection Head
Feature Extraction Backbone

Transfer Learning in Object Detection

COCO/
VOC

Detection Head
Feature Extraction Backbone

What if we had randomly initialised the last three layers?

Transfer Learning in Object Detection

COCO/
VOC

Detection Head
Feature Extraction Backbone

What if we had used no transfer learning at all?

Transfer Learning in Object Detection

● Transfer learning plays an important role in model training, specially in a low
data setting.

● Not every layer of a pre-trained model is equally useful. Initial layers are
known to be task-agnostic, and last layers can be task-specific.

● Despite the existence of active research in transfer learning, most SOTA
models in vision have not adapted to this behavior.

Neyshabur, Behnam, Hanie Sedghi, and Chiyuan Zhang. "What is being transferred in transfer learning?." NeurIPS. 2020.

Multi-Scale Feature Interaction

Feature Extraction
Backbone

Multi-Scale
Feature

Interaction

Detection Head

Segmentation
Head

Tracking Head

… and many more

Multi-Scale Feature Interaction

Tan, Mingxing, Ruoming Pang, and Quoc V. Le. "EfficientDet: Scalable and efficient object detection." CVPR. 2020.

FPN PANet NAS-FPN BiFPN

repeated blocks repeated blocks

Multi-Scale Feature Interaction

● Existing work focuses on some combination of top-down and/or bottom-up
approaches.

● With the increasing complexity of these modules, the tradeoff between
accuracy and efficiency has started saturating.

● NAS-based architectures have revealed the importance of direct
connections between non-adjacent feature scales.

Ghiasi, Golnaz, Tsung-Yi Lin, and Quoc V. Le. "NAS-FPN: Learning scalable feature pyramid architecture for object detection." CVPR. 2019.

YOLO-ReT

● Importance of
Individual Layers

● Backbone Truncation
● Raw Feature Collection

and Redistribution

Complete Model

Detection HeadTruncated Backbone

…...

Truncated
Last CNN

Layers

I

I/4

I/8

I/16

I/32

Raw Feature Collection and Redistribution Module

P

P

P

P

+ MB
5x5

Final
Outputs

= MaxPool = Upsample

= Pointwise ConvP

= Weighted Sum+
= MBConv Block with 5x5 kernelMB

5x5

= Concat

‘Detection
Neck’

(Eg., FPN,
PANet,
BiFPN
etc.)

Output
Layers

C

C

C

C

Complete Model

Detection HeadTruncated Backbone

…...

Truncated
Last CNN

Layers

I

I/4

I/8

I/16

I/32

Raw Feature Collection and Redistribution Module

P

P

P

P

+ MB
5x5

Final
Outputs

= MaxPool = Upsample

= Pointwise ConvP

= Weighted Sum+
= MBConv Block with 5x5 kernelMB

5x5

= Concat

‘Detection
Neck’

(Eg., FPN,
PANet,
BiFPN
etc.)

Output
Layers

C

C

C

C

Importance of Individual Layers

Backbone Truncation

● Initializing the last layers of the feature extraction backbone with transfer
learning weights actually ‘hurts’ the performance.

● Since these last layers hold no transfer learning importance, they can be
analysed purely from an architecture viewpoint.

● We propose that a truncated version of the feature extraction backbone is a
better alternative to width reduction.

Complete Model

Detection HeadTruncated Backbone

…...

Truncated
Last CNN

Layers

I

I/4

I/8

I/16

I/32

Raw Feature Collection and Redistribution Module

P

P

P

P

+ MB
5x5

Final
Outputs

= MaxPool = Upsample

= Pointwise ConvP

= Weighted Sum+
= MBConv Block with 5x5 kernelMB

5x5

= Concat

‘Detection
Neck’

(Eg., FPN,
PANet,
BiFPN
etc.)

Output
Layers

C

C

C

C

Raw Feature Collection and Redistribution

Collection Redistribution

Raw Feature Collection and Redistribution

Simplistic
Design

Minimal Network Fragmentation
(Each Collection and Redistribution Path Can be Executed in Parallel)

Raw Feature Collection and Redistribution

Direct Connection Paths Even Between Non-Adjacent Scales

Raw Feature Collection and Redistribution

Independent of the number of Output Scales

Raw Feature Collection and Redistribution

Cannot replace the
meticulousness provided by

other Multi-Scale Feature
Interaction methods

Some
Other

Multi-Scale
Feature

Interaction

But can be easily
integrated as an

additional feature
processing

Evaluation
● Experiment Setup
● Component Ablation
● State of the art Models

Experiment Setup

● We tested with 3 lightweight feature extraction backbones
(MobileNetV2x0.75, x1.4, and EfficientNet-B3) and various feature
interaction methods (FPN, PANet and BiFPN).

● We evaluated our methods on Pascal VOC and COCO datasets.

● We tested our models with on-device performance latencies, on Jetson
Nano, Jetson Xavier NX and Jetson AGX Xavier.

Qualitative Heatmap Study

Qualitative Heatmap Study

Qualitative Heatmap Study

Qualitative Heatmap Study

State of the art Models

Model Input Resolution
FPS AP50 (Detailed Results in Paper)

Nano NX AGX VOC COCO

Tiny-YOLOv3 416 27.36 66.55 91.71 61.30 33.10

Tinier-YOLO 416 30.14 68.73 92.09 65.70 34.00

YOLO-ReT-MobileNetV2 x 0.75 320 33.19 71.64 95.97 68.75 34.91
YOLO Nano 416 13.62 54.03 85.81 69.10 --

YOLO-ReT-MobileNetV2 x 1.4 320 23.01 65.37 93.49 70.35 35.77
YOLO Fastest 320 42.41 76.13 126.82 61.02 --

YOLO-ReT-MobileNetV2 x 1.4 224 43.16 84.32 113.94 62.91 31.63

State of the art Models

Model Input Resolution
FPS AP50 (Detailed Results in Paper)

Nano NX AGX VOC COCO

Tiny-YOLOv3 416 27.36 66.55 91.71 61.30 33.10

Tinier-YOLO 416 30.14 68.73 92.09 65.70 34.00

YOLO-ReT-MobileNetV2 x 0.75 320 33.19 71.64 95.97 68.75 34.91
YOLO Nano 416 13.62 54.03 85.81 69.10 --

YOLO-ReT-MobileNetV2 x 1.4 320 23.01 65.37 93.49 70.35 35.77
YOLO Fastest 320 42.41 76.13 126.82 61.02 --

YOLO-ReT-MobileNetV2 x 1.4 224 43.16 84.32 113.94 62.91 31.63

Code available at : github.com/prakharg24/yoloret

Thank You

